GLOBAL
EDITION

Computer Science

: {8

An Overview

THIRTEENTH EDITION™ P = N - ‘ .
L& AR b i - < Bins
‘I‘l--jt.‘i :. k I.‘}‘i&- ‘-.“ ,‘-" :

J. Glenn Brookshear
Dennis Brylow

Computer
Science

AN OVERVIEW

13t Edition
Global Edition

J. Glenn Brookshear
(Author Emeritus)
and
Dennis Brylow
Marquette University

@ Pearson
330 Hudson Street, NY NY 10013

Senior Vice President, Courseware Portfolio
Management: Engineering, Computer Science,
Mathematics, Statistics, and Global Editions: Marcia
Horton

Director, Portfolio Management: Engineering, Computer
Science, and Global Editions: Julian Partridge

Executive Portfolio Manager: Tracy Johnson

Portfolio Management Assistant: Meghan Jacoby

Managing Producer, ECS and Mathematics: Scott Disanno

Senior Content Producer: Erin Ault

Acquisitions Editor, Global Edition: K.K. Neelakantan

Assistant Project Editor, Global Edition: Aurko Mitra

Media Production Manager, Global Edition: Vikram
Kumar

Pearson Education Limited
KAO Two

KAO Park

Harlow

CM17 9NA

United Kingdom

and Associated Companies throughout the world

Senior Manufacturing Controller, Global Edition: Angela
Hawksbee

Manager, Rights and Permissions Manager: Ben Ferrini

Operations Specialist: Maura Zaldivar-Garcia

Inventory Manager: Bruce Bounty

Product Marketing Manager: Yvonne Vannatta

Field Marketing Manager: Demetrius Hall

Marketing Assistant: Jon Bryant

Full Service Project Management: Sasibalan Chidambaram,
SPi Global

Cover Design: Lumina Datamatics, Inc.

Cover Photo: Amirul Syaidi/Shutterstock

Visit us on theWorld Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2020

The rights of J. Glenn Brookshear and Dennis Brylow to be identified as the authors of this work have been asserted by
them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Computer Science: An Overview, 13" Edition,
ISBN 978-0-13-487546-0, by J. Glenn Brookshear and Dennis Brylow, published by Pearson Education © 2019.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission
of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing
Agency Ltd, Saffron House, 6-10 Kirby Street, London ECIN 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest
in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply
any affiliation with or endorsement of this book by such owners. For information regarding permissions, request forms,
and the appropriate contacts within the Pearson Education Global Rights and Permissions department, please visit

www.pearsoned.com/permissions.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does
not provide access to other Pearson digital products like MyLab and Mastering. The publisher reserves the right to remove

any material in this eBook at any time.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN 10: 1-292-26342-3
ISBN 13: 978-1-292-26342-7
eBook ISBN: 978-1-292-26344-1

eBook formatted by SPi Global

For Dexter,
who [know will eagerly read
this book cover to cover
before he turns eight.
Oh, the places you will go . . .

Contents

Chapter 0 Introduction 17

0.1 The Role of Algorithms 18

0.2 The History of Computing 20

0.3 An Outline of Our Study 25

0.4 The Overarching Themes of Computer Science 27

Chapter 1 Data Storage 39

1.1 Bits and Their Storage 40
1.2 Main Memory 48
1.3 Mass Storage 51
1.4 Representing Information as Bit Patterns 57
*1.5 The Binary System 65
*1.6 Storing Integers 70
*1.7 Storing Fractions 77
*1.8 Data and Programming 83
*1.9 Data Compression 91
*1.10 Communication Errors 97

Chapter 2 Data Manipulation 111

2.1 Computer Architecture 112

2.2 Machine Language 115

2.3 Program Execution 122

*2.4 Arithmetic/Logic Instructions 130

*2.5 Communicating with Other Devices 135
*2.6 Programming Data Manipulation 140
*2.7 Other Architectures 151

Chapter 3 Operating Systems 163
3.1 The History of Operating Systems 164
3.2 Operating System Architecture 169
3.3 Coordinating the Machine’s Activities 177

*3.4 Handling Competition Among Processes 180
3.5 Security 186

Chapter 4 Networking and the Internet 197

4.1 Network Fundamentals 198
4.2 The Internet 208
4.3 The World Wide Web 220

* Asterisks indicate suggestions for optional sections.

*4.4 Internet Protocols 229
*4.5 Simple Client Server 237
4.6 Cybersecurity 241

Chapter 5 Algorithms 259

5.1 The Concept of an Algorithm 260
5.2 Algorithm Representation 263
5.3 Algorithm Discovery 272

5.4 Iterative Structures 279

5.5 Recursive Structures 290

5.6 Efficiency and Correctness 299

Chapter 6 Programming Languages 319

6.1 Historical Perspective 320

6.2 Traditional Programming Concepts 331
6.3 Procedural Units 346

6.4 Language Implementation 354

6.5 Object-Oriented Programming 364
*6.6 Programming Concurrent Activities 371
*6.7 Declarative Programming 374

Chapter 7 Software Engineering 389

71 The Software Engineering Discipline 390
72 The Software Life Cycle 393

73 Software Engineering Methodologies 398
74 Modularity 401

75 Tools of the Trade 410

76 Quality Assurance 419

77 Documentation 422

78 The Human-Machine Interface 424

79 Software Ownership and Liability 428

Chapter 8 Data Abstractions 437

8.1 Basic Data Structures 438

8.2 Related Concepts 443

8.3 Implementing Data Structures 446
8.4 A Short Case Study 461

8.5 Customized Data Types 466

8.6 Classes and Objects 470

*8.7 Pointers in Machine Language 472

Chapter 9 Database Systems 485

9.1 Database Fundamentals 486
9.2 The Relational Model 492

Contents

6 Contents

*9.3 Object-Oriented Databases 503

*9.4 Maintaining Database Integrity 506

*9.5 Traditional File Structures 510

9.6 Data Mining 519

9.7 Social Impact of Database Technology 522

Chapter 10 Computer Graphics 533

10.1 The Scope of Computer Graphics 534
10.2 Overview of 3D Graphics 537

10.3 Modeling 539

10.4 Rendering 549

*10.5 Dealing with Global Lighting 561
10.6 Animation 564

Chapter 11 Artificial Intelligence 575

11.1 Intelligence and Machines 576
11.2 Perception 581

11.3 Reasoning 588

11.4 Additional Areas of Research 600
11.5 Artificial Neural Networks 607
11.6 Robotics 612

11.7 Considering the Consequences 615

Chapter 12 Theory of Computation 629

12.1 Functions and Their Computation 630
12.2 Turing Machines 633

12.3 Universal Programming Languages 637
12.4 A Noncomputable Function 643

12.5 Complexity of Problems 648

*12.6 Public-Key Cryptography 660

Appendixes 670

ASCII 670
Circuits to Manipulate Two’s Complement
Representations 671
Vole: A Simple Machine Language 674
High-Level Programming Languages 677
The Equivalence of Iterative and Recursive Structures 679
Answers to Questions & Exercises 681

= >

mmg O

Index 726

Preface

This book presents an introductory survey of computer science. It explores
the breadth of the subject while including enough depth to convey an honest
appreciation of the topics involved.

Audience

We wrote this text for students of computer science as well as students from
other disciplines. As for computer science students, most begin their studies
with the illusion that computer science is programming, web browsing, and
Internet file sharing because that is essentially all they have seen. Yet computer
science is much more than this. Beginning computer science students need
exposure to the breadth of the subject in which they are planning to major.
Providing this exposure is the theme of this book. It gives students an overview
of computer science—a foundation from which they can appreciate the rele-
vance and interrelationships of future courses in the field. This survey approach
is, in fact, the model used for introductory courses in the natural sciences.

This broad background is also what students from other disciplines need if
they are to relate to the technical society in which they live. A computer science
course for this audience should provide a practical, realistic understanding of
the entire field rather than merely an introduction to using the Internet or
training in the use of some popular software packages. There is, of course, a
proper place for that training, but this text is about educating.

While writing previous editions of this text, maintaining accessibility for
nontechnical students was a major goal. The result was that the book has been
used successfully in courses for students over a wide range of disciplines and
educational levels, ranging from high school to graduate courses. This 13t
edition is designed to continue that tradition.

New in the 13" Edition

Now in color! The move to a full color printing process in the 13" edition has
allowed us to make many figures and diagrams more descriptive, and to use
syntax coloring to better effect for clarifying code and pseudocode segments in
the text. Most modern programming interfaces use color to aid the program-
mer’s understanding of code; your computer science textbook should do no less.

A major theme during the development of this 13 edition has been
highlighting the intersections with the new College Board Advanced
Placement® Computer Science Principles (“CSP”) exam. This “breadth-first”
textbook for introducing computer science has included many of the big ideas
and computational practices codified in the CSP framework since long before
that exam came into existence; prior editions of the book have been used in

8

Preface

pilot versions of CSP courses, and as a professional development resource for
educators preparing to teach the high school version of the course. While the
primary audience for this book remains college-level introductory courses, this
edition explicitly calls out many points of intersection with CSP content to better
assist students and instructors either preparing for the AP® CSP exam, or taking a
college-level course that is intended to correspond with the credit from that exam.

The 13" edition continues the use of Python code examples and Python-
like pseudocode adopted in the 12" edition. We made this change for sev-
eral reasons. First, the text already contains quite a bit of code in various
languages, including detailed pseudocode in several chapters. To the extent
that readers are already absorbing a fair amount of syntax, it is appropriate
to target that syntax toward a language they may actually see in a subsequent
course. More importantly, a growing number of instructors who use this text
have made the determination that even in a breadth-first introduction to com-
puting, it is difficult for students to master many of the topics in the absence
of programming tools for exploration and experimentation.

But why Python? Choosing a language is always a contentious matter,
with any choice bound to upset at least as many as it pleases. Python is an
excellent middle ground, with:

¢ aclean, easily learned syntax,

e simple I/O primitives,

e data types and control structures that correspond closely to the
pseudocode primitives used in earlier editions, and

e support for multiple programming paradigms.

It is a mature language with a vibrant development community and copi-
ous online resources for further study. Python remains one of the top five
most commonly used languages in the industry by some measures, and has
seen a sharp increase in its usage for introductory computer science courses.
It is particularly popular for introductory courses for non-majors, and has
wide acceptance in other STEM fields, such as physics and biology, and as the
language of choice for computational science applications.

Nevertheless, the focus of the text remains on broad computer science
concepts; the Python supplements are intended to give readers a deeper taste
of programming than previous editions, but not to serve as a full-fledged intro-
duction to programming. The Python topics covered are driven by the existing
structure of the text. Thus, Chapter 1 touches on Python syntax for representing
data—integers, floats, ASCII, and Unicode strings. Chapter 2 touches on Python
operations that closely mirror the machine primitives discussed throughout
the rest of the chapter. Conditionals, loops, and functions are introduced in
Chapter 5, at the time that those constructs are needed to devise a sufficiently
complete pseudocode for describing algorithms. In short, Python constructs
are used to reinforce computer science concepts rather than to hijack the
conversation.

Every chapter has seen revisions, updates, and corrections from the previ-
ous editions.

Organization

This text follows a bottom-up arrangement of subjects that progresses from
the concrete to the abstract—an order that results in a sound pedagogical
presentation in which each topic leads to the next. It begins with the funda-
mentals of information encoding, data storage, and computer architecture
(Chapters 1 and 2); progresses to the study of operating systems (Chapter 3) and
computer networks (Chapter 4); investigates the topics of algorithms, program-
ming languages, and software development (Chapters 5 through 7); explores
techniques for enhancing the accessibility of information (Chapters 8 and 9);
considers some major applications of computer technology via graphics
(Chapter 10) and artificial intelligence (Chapter 11); and closes with an
introduction to the abstract theory of computation (Chapter 12).

Although the text follows this natural progression, the individual chapters
and sections are surprisingly independent and can usually be read as isolated
units or rearranged to form alternative sequences of study. Indeed, the book is
often used as a text for courses that cover the material in a variety of orders. One
of these alternatives begins with material from Chapters 5 and 6 (Algorithms
and Programming Languages) and returns to the earlier chapters as desired.
I also know of one course that starts with the material on computability from
Chapter 12. In still other cases, the text has been used in “senior capstone”
courses where it serves as merely a backbone from which to branch into projects
in different areas. Courses for less technically oriented audiences may want to
concentrate on Chapters 4 (Networking and the Internet), 9 (Database Systems),
10 (Computer Graphics), and 11 (Artificial Intelligence).

On the opening page of each chapter, we have used asterisks to mark
some sections as optional. These are sections that cover topics of more spe-
cific interest, or perhaps explore traditional topics in more depth. Our inten-
tion is merely to provide suggestions for alternative paths through the text.
There are, of course, other shortcuts. In particular, if you are looking for a
quick read, we suggest the following sequence:

Section Topic

1.1-1.4 Basics of data encoding and storage
2.1-23 Machine architecture and machine language
3.1-33 Operating systems

4.1-4.3 Networking and the Internet
5.1-54 Algorithms and algorithm design
6.1-6.4 Programming languages

71-72 Software engineering

8.1-8.3 Data abstractions

9.1-9.2 Database systems

10.1-10.2 Computer graphics

11.1-11.3 Artificial intelligence

12.1-12.2 Theory of computation

There are several themes woven throughout the text. One is that com-
puter science is dynamic. The text repeatedly presents topics in a historical

Organization

9

10

Preface

perspective, discusses the current state of affairs, and indicates directions
of research. Another theme is the role of abstraction and the way in which
abstract tools are used to control complexity. This theme is introduced in
Chapter 0 and then echoed in the context of operating system architecture,
networking, algorithm development, programming language design, software
engineering, data organization, and computer graphics.

To Instructors

There is more material in this text than students can normally cover in a
single semester, so do not hesitate to skip topics that do not fit your course
objectives or to rearrange the order as you see fit. You will find that, although
the text follows a plot, the topics are covered in a largely independent manner
that allows you to pick and choose as you desire. The book is designed to be
used as a course resource —not as a course definition. We suggest encouraging
students to read the material not explicitly included in your course. We
underrate students if we assume that we have to explain everything in class.
We should be helping them learn to learn on their own.

We feel obliged to say a few words about the bottom-up, concrete-
to-abstract organization of the text. As academics, we too often assume that
students will appreciate our perspective of a subject—often one that we
have developed over many years of working in a field. As teachers, we think
we do better by presenting material from the student’s perspective. This is
why the text starts with data representation/storage, machine architecture,
operating systems, and networking. These are topics to which students read-
ily relate —they have most likely heard terms such as JPEG and MP3; they
have probably recorded data on DVDs and flash drives; they have inter-
acted with an operating system; and they use the Internet and smartphones
daily. By starting the course with these topics, students discover answers to
many of the “why” questions they have been carrying for years, and learn to
view the course as practical rather than theoretical. From this beginning, it
is natural to move on to the more abstract issues of algorithms, algorithmic
structures, programming languages, software development methodologies,
computability, and complexity, that those of us in the field view as the main
topics in the science. As already stated, the topics are presented in a manner
that does not force you to follow this bottom-up sequence, but we encourage
you to give it a try.

We are all aware that students learn a lot more than we teach them
directly, and the lessons they learn implicitly are often better absorbed
than those that are studied explicitly. This is significant when it comes to
“teaching” problem solving. Students do not become problem solvers by
studying problem-solving methodologies. They become problem solvers
by solving problems—and not just carefully posed “textbook problems.”
So this text contains numerous problems, a few of which are intentionally
vague —meaning that there is not necessarily a single correct approach
or a single correct answer. We encourage you to use these and to expand
on them.

Supplemental Resources

Other topics in the “implicit learning” category are those of profession-
alism, ethics, and social responsibility. We do not believe that this material
should be presented as an isolated subject that is merely tacked on to the
course. Instead, it should be an integral part of the coverage that surfaces
when it is relevant. This is the approach followed in this text. You will find
that Sections 3.5,4.6,79,9.7 and 11.7 present such topics as security, privacy,
liability, and social awareness in the context of operating systems, networking,
software engineering, database systems, and artificial intelligence. You will
also find that each chapter includes a collection of questions called Social
Issues that challenge students to think about the relationship between the
material in the text and the society in which they live.

Thank you for considering our text for your course. Whether you do or
do not decide that it is right for your situation, I hope that you find it to be a
contribution to the computer science education literature.

Pedagogical Features

This text is the product of many years of teaching. As a result, it is rich in peda-
gogical aids. Paramount is the abundance of problems to enhance the student’s
participation—over 1,000 in this 13" edition. These are classified as Questions
and Exercises, Chapter Review Problems, and Social Issues. The Questions and
Exercises appear at the end of each section (except for the introductory chapter).
They review the material just discussed, extend the previous discussion, or hint at
related topics to be covered later. These questions are answered in Appendix F.

The Chapter Review Problems appear at the end of each chapter (except
for the introductory chapter). They are designed to serve as “homework”
problems in that they cover the material from the entire chapter and are not
answered in the text.

Also, at the end of each chapter are the questions in the Social Issues cat-
egory. They are designed for thought and discussion. Many of them can be used
to launch research assignments culminating in short written or oral reports.

Each chapter also ends with a list called Additional Reading that contains
references to other material relating to the subject of the chapter. The websites
identified in this preface, in the text, and in the sidebars of the text are also
good places to look for related material.

Supplemental Resources

A variety of supplemental materials for this text are available at the book’s
companion website: www.pearsonglobaleditions.com. The following are
accessible to all readers:

e Chapter-by-chapter activities that extend topics in the text and
provide opportunities to explore related topics.

e Chapter-by-chapter “self-tests” that help readers to rethink the
material covered in the text.

e Activities that teach the basics of Python in a pedagogical sequence
compatible with the text.

11

http://www.pearsonglobaleditions.com/

12

Preface

In addition, the following supplements are available to quali-
fied instructors at Pearson’s Instructor Resource Center. Please visit
www . pearsonglobaleditions.com or contact your Pearson sales representa-
tive for information on how to access them.

e Instructor’s Guide with answers to the Chapter Review Problems
* PowerPoint lecture slides
e Test bank

To Students

Glenn Brookshear is a bit of a nonconformist (some of his friends would say
more than a bit), so when he set out to write this text he didn’t always follow
the advice he received. In particular, many argued that certain material was
too advanced for beginning students. But, we believe that if a topic is rel-
evant, then it is relevant even if the academic community considers it to be
an “advanced topic.” You deserve a text that presents a complete picture of
computer science —not a watered-down version containing artificially simpli-
fied presentations of only those topics that have been deemed appropriate for
introductory students. Thus, we have not avoided topics. Instead, we’ve sought
better explanations. We've tried to provide enough depth to give you an hon-
est picture of what computer science is all about. As in the case of spices in a
recipe, you may choose to skip some of the topics in the following pages, but
they are there for you to taste if you wish—and we encourage you to do so.

We should also point out that in any course dealing with technology, the
details you learn today may not be the details you will need to know tomorrow.
The field is dynamic—that’s part of the excitement. This book will give you a
current picture of the subject as well as a historical perspective. With this back-
ground, you will be prepared to grow along with technology. We encourage you
to start the growing process now by exploring beyond this text. Learn to learn.

Thank you for the trust you have placed in us by choosing to read our
book. As authors we have an obligation to produce a manuscript that is worth
your time. We hope you find that we have lived up to this obligation.

Acknowledgments

First and foremost, I thank Glenn Brookshear, who has shepherded this book,
“his baby,” through 11 previous editions, spanning more than a quarter cen-
tury of rapid growth and tumultuous change in the field of computer sci-
ence. While this is the second edition in which he has allowed a co-author to
oversee all of the revisions, the pages of this 13'" edition remain largely in
Glenn’s voice and, I hope, guided by his vision. Any new blemishes are mine;
the elegant underlying framework are all his.

I join Glenn in thanking those of you who have supported this book by
reading and using it in previous editions. We are honored. Thirteen editions
for a computer science textbook? We must be nearing some kind of record.

http://www.pearsonglobaleditions.com/

Andrew Kuemmel (Madison West) has been an invaluable sounding
board as we worked to identify the overlaps between the 13™ edition and
the CS Principles framework. He is the only person I know who has success-
fully taught many instances of the CSP course at both the high school and
university levels, and his tireless advocacy for computer science educators in
my home state of Wisconsin has been truly inspirational.

David T. Smith (Indiana University of Pennsylvania) played a significant role
in co-authoring revisions to the 11" edition with me, many of which are still visible
in this 13" edition. David’s close reading of previous editions and careful attention
to the supplemental materials have been essential. Andrew Kuemmel (Madison
West), George Corliss (Marquette), and Chris Mayfield (James Madison) all
provided valuable feedback, insight, and/or encouragement on drafts for this or
previous editions, while James E. Ames (Virginia Commonwealth), Stephanie E.
August (Loyola), Yoonsuck Choe (Texas A&M), Melanie Feinberg (UT-Austin),
Eric D. Hanley (Drake), Sudharsan R. Iyengar (Winona State), Ravi Mukkamala
(Old Dominion), and Edward Pryor (Wake Forest) all offered valuable reviews
of the Python-specific revisions for the 12" edition.

Others who have contributed in this or previous editions include J. M.
Adams, C. M. Allen, D. C. S. Allison, E. Angel, R. Ashmore, B. Auernheimer,
P. Bankston, M. Barnard, P. Bender, K. Bowyer, P. W. Brashear, C. M. Brown,
H. M. Brown, B. Calloni, J. Carpinelli, M. Clancy, R.T. Close, D. H. Cooley, L. D.
Cornell, M. J. Crowley, F. Deek, M. Dickerson, M. J. Duncan, S. Ezekiel,
C. Fox, S. Fox, N. E. Gibbs, J. D. Harris, D. Hascom, L. Heath, P. B. Henderson,
L. Hunt, M. Hutchenreuther, L. A. Jehn, K. K. Kolberg, K. Korb, G. Krenz,
J. Kurose, J. Liu, T. J. Long, C. May, J. J. McConnell, W. McCown, S. J. Merrill,
K. Messersmith, J. C. Moyer, M. Murphy, J. P. Myers, Jr., D. S. Noonan,
G. Nutt, W. W. Oblitey, S. Olariu, G. Riccardi, G. Rice, N. Rickert, C. Riedesel,
J. B. Rogers, G. Saito, W. Savitch, R. Schlafly, J. C. Schlimmer, S. Sells, Z. Shen,
G. Sheppard, J. C. Simms, M. C. Slattery, J. Slimick, J. A. Slomka, J. Solderitsch,
R. Steigerwald, L. Steinberg, C. A. Struble, C. L. Struble, W. J. Taffe, J. Talburt,
P. Tonellato, P. Tromovitch, P. H. Winston, E. D. Winter, E. Wright, M. Ziegler,
and one anonymous. To these individuals we give our sincere thanks.

Diane Christie designed Java and C++ manuals for the companion website
in a previous edition, from which our new Python resources are descended.
Thank you, Diane. Another thank you goes to Roger Eastman, who was the
creative force behind the chapter-by-chapter activities that accompanied
prior editions of the text, the DNA of which can still be found in the current
edition’s companion website activities.

My thanks to the good people at Pearson who have supported this project.
Tracy Johnson, Erin Ault, Carole Snyder, and Scott Disanno in particular have
brought their wisdom and many improvements to the book throughout the process.

Finally, my thanks to my wife, Petra, who distracted our three children for
many long afternoons and evenings while I worked on this edition. She is my rock.

D.W.B.
Marquette University
January 01, 2018

Acknowledgments

13

14

Preface

Acknowledgments for the Global Edition

Pearson would like to thank and acknowledge the following people for
their contributions to this Global Edition.

Contributor
Manasa S. (NMAM Institute of Technology)

Reviewers
Ajay Mittal (University Institute of Engineering and Technology)
Lindsay Ward (James Cook University)

This page intentionally left blank

Chapter

n this preliminary chapter, we consider the scope of computer science,
develop a historical perspective, and establish a foundation from which
to launch our study. ®

0.1 THE ROLE OF ALGORITHMS
0.2 THE HISTORY OF COMPUTING
0.3 AN OUTLINE OF OUR STUDY

0.4 THE OVERARCHING THEMES
OF COMPUTER SCIENCE

Algorithms
Abstraction
Creativity
Data
Programming
Internet
Impact

ENDURING UNDERSTANDINGS AND LEARNING OUTCOMES

The study of algorithms is at the core of
computer science.

LO. Explain the importance of algorithms
in the field of computer science.

The recent history of computer science
is characterized by rapid advancements
in computing power, miniaturization, and
connectivity.

LO. Identify major milestones in com-
puter science history that have paved the
way to our modern day technological
society.

Advancements in computer science are
profoundly impacting human culture and
society.

LO. Discuss some of the social, ethical,
or legal dilemmas that have resulted from
advancements in computer science.

18

Chapter 0 Introduction

Computer science is the discipline that seeks to build a scientific foundation
for such topics as computer design, computer programming, information pro-
cessing, algorithmic solutions of problems, and the algorithmic process itself.
It provides the underpinnings for today’s computer applications as well as the
foundations for tomorrow’s computing infrastructure.

This book provides a comprehensive introduction to this science. We will
investigate a wide range of topics including most of those that constitute a
typical university computer science curriculum. We want to appreciate the full
scope and dynamics of the field. Thus, in addition to the topics themselves,
we will be interested in their historical development, the current state of
research, and prospects for the future. Our goal is to establish a functional
understanding of computer science —one that will support those who wish to
pursue more specialized studies in the science as well as one that will enable
those in other fields to flourish in an increasingly technical society.

0.1 The Role of Algorithms

We begin with the most fundamental concept of computer science —that of an
algorithm. Informally, an algorithm is a set of steps that defines how a task is
performed. (We will be more precise later, in Chapter 5.) For example, there
are algorithms for cooking (called recipes), for finding your way through
a strange city (more commonly called directions), for operating washing
machines (usually displayed on the inside of the washer’s lid or perhaps on
the wall of a laundromat), for playing music (expressed in the form of sheet
music), and for performing magic tricks (Figure 0.1).

Before a machine such as a computer can perform a task, an algorithm
for performing that task must be discovered and represented in a form that
is compatible with the machine. A representation of an algorithm is called
a program. For the convenience of humans, computer programs are usually
printed on paper or displayed on computer screens. For the convenience of
machines, programs are encoded in a manner compatible with the technology
of the machine. The process of developing a program, encoding it in machine-
compatible form, and inserting it into a machine is called programming, or
sometimes coding. Programs, and the algorithms they represent, are collec-
tively referred to as software, in contrast to the machinery itself, which is
known as hardware.

The study of algorithms began as a subject in mathematics. Indeed, the
search for algorithms was a significant activity of mathematicians long before
the development of today’s computers. The goal was to find a single set of
directions that described how all problems of a particular type could be
solved. One of the best known examples of this early research is the long
division algorithm for finding the quotient of two multiple-digit numbers.
Another example is the Euclidean algorithm, discovered by the Ancient

0.1 The Role of Algorithms

Effect: The performer places some cards from a normal deck of playing cards face

down on a table and mixes them thoroughly while spreading them out on the table.

Then, as the audience requests either red or black cards, the performer turns over cards

of the requested color.

Secret and Patter:

Step 1. From a normal deck of cards, select ten red cards and ten black cards. Deal these cards
face up in two piles on the table according to color.

Step2. Announce that you have selected some red cards and some black cards.

Step 3. Pick up the red cards. Under the pretense of aligning them into a small deck, hold them
face down in your left hand and, with the thumb and first finger of your right hand, pull
back on each end of the deck so that each card is given a slightly backward curve. Then
place the deck of red cards face down on the table as you say, “Here are the red cards
in this stack.”

Step 4. Pick up the black cards. In a manner similar to that in step 3, give these cards a slight
forward curve. Then return these cards to the table in a face-down deck as you say,
“And here are the black cards in this stack.”

Step 5. Immediately after returning the black cards to the table, use both hands to mix the red
and black cards (still face down) as you spread them out on the tabletop. Explain that
you are thoroughly mixing the cards.

Step 6. Aslong as there are face-down cards on the table, repeatedly
execute the following steps:

6.1. Ask the audience to request either a red or a black card.

6.2. If the color requested is red and there is a face-down card with a concave
appearance, turn over such a card while saying, “Here is a red card.”

6.3. If the color requested is black and there is a face-down card with a convex
appearance, turn over such a card while saying, “Here is a black card.”

6.4. Otherwise, state that there are no more cards of the requested color and turn over
the remaining cards to prove your claim.

Figure 0.1 An algorithm for a magic trick

Greek mathematician Euclid, for finding the greatest common divisor of two
positive integers (Figure 0.2).

Once an algorithm for performing a task has been found, the performance
of that task no longer requires an understanding of the principles on which
the algorithm is based. Instead, the performance of the task is reduced to the
process of merely following directions. (We can follow the long division algo-
rithm to find a quotient or the Euclidean algorithm to find a greatest common

Description: This algorithm assumes that its input consists of two positive integers and
proceeds to compute the greatest common divisor of these two values.

Procedure:

Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.
Step 2. Divide M by N, and call the remainder R.

Step 3. If Ris not 0, then assign M the value of N, assign N the value of R, and return to step 2;
otherwise, the greatest common divisor is the value currently assigned to N.

Figure 0.2 The Euclidean algorithm for finding the greatest common divisor of two
positive integers

20

Chapter 0 Introduction

divisor without understanding why the algorithm works.) In a sense, the intel-
ligence required to solve the problem at hand is encoded in the algorithm.

Capturing and conveying intelligence (or at least intelligent behavior) by
means of algorithms allows us to build machines that perform useful tasks.
Consequently, the level of intelligence displayed by machines is limited by
the intelligence that can be conveyed through algorithms. We can construct
a machine to perform a task only if an algorithm exists for performing that
task. In turn, if no algorithm exists for solving a problem, then the solution of
that problem lies beyond the capabilities of machines.

Identifying the limitations of algorithmic capabilities was solidified as
a subject in mathematics in the 1930s with the publication of Kurt Gddel’s
incompleteness theorem. This theorem essentially states that in any math-
ematical theory encompassing our traditional arithmetic system, there are
statements whose truth or falseness cannot be established by algorithmic
means. In short, any complete study of our arithmetic system lies beyond the
capabilities of algorithmic activities. This realization shook the foundations
of mathematics, and the study of algorithmic capabilities that ensued was the
beginning of the field known today as computer science. Indeed, it is the study
of algorithms that forms the core of computer science.

0.2 The History of Computing

Today’s computers have an extensive genealogy. One of the earlier computing
devices was the abacus. History tells us that it probably had its roots in ancient
China and was used in the early Greek and Roman civilizations. The machine
is quite simple, consisting of beads strung on rods that are in turn mounted
in a rectangular frame (Figure 0.3). As the beads are moved back and forth
on the rods, their positions represent stored values. It is in the positions of

Figure 0.3 Chinese wooden abacus (Ekkapon/Shutterstock)

0.2 The History of Computing

the beads that this “computer” represents and stores data. For control of an
algorithm’s execution, the machine relies on the human operator. Thus, the
abacus alone is merely a data storage system; it must be combined with a
human to create a complete computational machine.

In the time period after the Middle Ages and before the Modern Era, the
quest for more sophisticated computing machines was seeded. A few inven-
tors began to experiment with the technology of gears. Among these were
Blaise Pascal (1623-1662) of France, Gottfried Wilhelm Leibniz (1646-1716)
of Germany, and Charles Babbage (1792-1871) of England. These machines
represented data through gear positioning, with data being entered mechani-
cally by establishing initial gear positions. Output from Pascal’s and Leibniz’s
machines was achieved by observing the final gear positions. Babbage, on the
other hand, envisioned machines that would print results of computations
on paper so that the possibility of transcription errors would be eliminated.

As for the ability to follow an algorithm, we can see a progression of
flexibility in these machines. Pascal’s machine was built to perform only
addition. Consequently, the appropriate sequence of steps was embedded into
the structure of the machine itself. In a similar manner, Leibniz’s machine had
its algorithms firmly embedded in its architecture, although the operator could
select from a variety of arithmetic operations it offered. Babbage’s Differ-
ence Engine (of which only a demonstration model was constructed) could be
modified to perform a variety of calculations, but his Analytical Engine (never
funded for construction) was designed to read instructions in the form of holes
in paper cards. Thus Babbage’s Analytical Engine was programmable. In fact,
Augusta Ada Byron (Ada Lovelace), who published a paper in which she dem-
onstrated how Babbage’s Analytical Engine could be programmed to perform
various computations, is often identified today as the world’s first programmer.

The idea of communicating an algorithm via holes in paper was not origi-
nated by Babbage. He got the idea from Joseph Jacquard (1752-1834), who, in
1801, had developed a weaving loom in which the steps to be performed dur-
ing the weaving process were determined by patterns of holes in large thick
cards made of wood (or cardboard). In this manner, the algorithm followed
by the loom could be changed easily to produce different woven designs.
Another beneficiary of Jacquard’s idea was Herman Hollerith (1860-1929),
who applied the concept of representing information as holes in paper cards
to speed up the tabulation process in the 1890 U.S. census. (It was this work by
Hollerith that led to the creation of IBM.) Such cards ultimately came to be
known as punched cards and survived as a popular means of communicating
with computers well into the 1970s.

Nineteenth century technology was unable to cost-effectively produce the
complex gear-driven machines of Pascal, Leibniz, and Babbage. But with the
advances in electronics in the early 1900s, this barrier was overcome. Exam-
ples of this progress include the electromechanical machine of George Stibitz,
completed in 1940 at Bell Laboratories, and the Mark I, completed in 1944 at
Harvard University by Howard Aiken and a group of IBM engineers. These

21

22

Chapter 0 Introduction

Figure 0.4 Three women operating the ENIAC’s (Electronic Numerical Integrator and
Computer) main control panel while the machine was at the Moore School. The machine was
later moved to the U.S. Army’s Ballistics Research Laboratory. (Courtesy of U.S. Army.)

machines made heavy use of electronically controlled mechanical relays. In
this sense, they were obsolete almost as soon as they were built, because
other researchers were applying the technology of vacuum tubes to construct
totally electronic computers. The first of these vacuum tube machines was
apparently the Atanasoff-Berry machine, constructed during the period from
1937 to 1941 at Iowa State College (now Iowa State University) by John
Atanasoff and his assistant, Clifford Berry. Another was a machine called
Colossus, built under the direction of Tommy Flowers in England to decode
German messages during the latter part of World War II. (Actually, as many
as ten of these machines were apparently built, but military secrecy and issues
of national security kept their existence from becoming part of the “computer
family tree.”) Other, more flexible machines, such as the ENIAC (Electronic
Numerical Integrator and Computer) developed by John Mauchly and J.
Presper Eckert at the Moore School of Electrical Engineering, (Figure 0.4),
University of Pennsylvania, soon followed.

From that point on, the history of computing machines has been closely
linked to advancing technology, including the invention of transistors (for
which physicists William Shockley, John Bardeen, and Walter Brattain were
awarded a Nobel Prize) and the subsequent development of complete circuits
constructed as single units, called integrated circuits (for which Jack Kilby
also won a Nobel Prize in physics). With these developments, the room-sized
machines of the 1940s were reduced over the decades to the size of single
cabinets. At the same time, the processing power of computing machines
began to double every two years (a trend that has continued to this day). As
work on integrated circuitry progressed, many of the components within a
computer became readily available on the open market as integrated circuits
encased in toy-sized blocks of plastic called chips.

N\

0.2 The History of Computing

Babbage’s Difference Engine

The machines designed by Charles Babbage were truly the forerunners of modern computer design.
If technology had been able to produce his machines in an economically feasible manner and if the
data processing demands of commerce and government had been on the scale of today’s requirements,
Babbage’s ideas could have led to a computer revolution in the 1800s. As it was, only a demonstration
model of his Difference Engine was constructed in his lifetime. This machine determined numerical
values by computing “successive differences.” We can gain an insight to this technique by considering
the problem of computing the squares of the integers. We begin with the knowledge that the square
of 0 is 0, the square of 1 is 1, the square of 2 is 4, and the square of 3 is 9. With this, we can determine
the square of 4 in the following manner (see the following diagram). We first compute the differences
of the squares we already know: 1> — 0% = 1,22 — 12 = 3, and 3% — 2% = 5. Then we compute the
differences of these results:3 — 1 = 2,and 5 — 3 = 2. Note that these differences are both 2. Assum-
ing that this consistency continues (mathematics can show that it does), we conclude that the differ-
ence between the value (4> — 3%) and the value (3> — 2%) must also be 2. Hence (4> — 3%) must be 2
greater than (3° — 2%),s0 4> — 32 = 7 and thus 4> = 3% + 7 = 16. Now that we know the square of
4, we could continue our procedure to compute the square of 5 based on the values of 12,22, 3% and
42, (Although a more in-depth discussion of successive differences is beyond the scope of our current
study, students of calculus may wish to observe that the preceding example is based on the fact that
the derivative of y = x? s a straight line with a slope of 2.)

2 First Second
difference difference

>
1—— 1 —
>
>

3/>

2
s 2

9 2
2

|

D« |

| —

\

e
\

\
\

23

A major step toward popularizing computing was the development

of desktop computers. The origins of these machines can be traced to the
computer hobbyists who built homemade computers from combinations of
chips. It was within this “underground” of hobby activity that Steve Jobs and
Stephen Wozniak built a commercially viable home computer and, in 1976,
established Apple Computer, Inc. (now Apple Inc.) to manufacture and mar-
ket their products. Other companies that marketed similar products were
Commodore, Heathkit, and Radio Shack. Although these products were
popular among computer hobbyists, they were not widely accepted by the
business community, which continued to look to the well-established IBM
and its large mainframe computers for the majority of its computing needs.

24 Chapter 0 Introduction

Augusta Ada Byron

Augusta Ada Byron, Countess of Lovelace, has been the subject of much commentary in the computing
community. She lived a somewhat tragic life of less than 37 years (1815-1852) that was complicated by
poor health and the fact that she was a nonconformist in a society that limited the professional role
of women. Although she was interested in a wide range of science, she concentrated her studies in
mathematics. Her interest in “compute science” began when she became fascinated by the machines of
Charles Babbage at a demonstration of a prototype of his Difference Engine in 1833. Her contribution
to computer science stems from her translation from French into English of a paper discussing Babbage’s
designs for the Analytical Engine. To this translation, Babbage encouraged her to attach an addendum
describing applications of the engine and containing examples of how the engine could be programmed
to perform various tasks. Babbage’s enthusiasm for Ada Byron’s work was apparently motivated by his
hope that its publication would lead to financial backing for the construction of his Analytical Engine.
(As the daughter of Lord Byron, Ada Byron held celebrity status with potentially significant financial
connections.) This backing never materialized, but Ada Byron’s addendum has survived and is consid-
ered to contain the first examples of computer programs. The degree to which Babbage influenced Ada
Byron’s work is debated by historians. Some argue that Babbage made major contributions, whereas
others contend that he was more of an obstacle than an aid. Nonetheless, Augusta Ada Byron is rec-
ognized today as the world’s first programmer, a status that was certified by the U.S. Department of
Defense when it named a prominent programming language (Ada) in her honor.

In 1981, IBM introduced its first desktop computer, called the personal
computer, or PC, whose underlying software was developed by a newly-
formed company known as Microsoft. The PC was an instant success and
legitimized the desktop computer as an established commodity in the minds
of the business community. Today, the term PC is widely used to refer to all
those machines (from various manufacturers) whose design has evolved from
IBM’s initial desktop computer, most of which continue to be marketed with
software from Microsoft. At times, however, the term PC is used interchange-
ably with the generic terms desktop or laptop.

As the twentieth century drew to a close, the ability to connect individual
computers in a world-wide system called the Internet was revolutioniz-
ing communication. In this context, Tim Berners-Lee (a British scientist)
proposed a system by which documents stored on computers throughout the
Internet could be linked together producing a maze of linked information
called the World Wide Web (often shortened to “Web”). To make the infor-
mation on the Web accessible, software systems, called search engines, were
developed to “sift through” the Web, “categorize” their findings, and then use
the results to assist users researching particular topics. Major players in this
field are Google, Yahoo, and Microsoft. These companies continue to expand
their Web-related activities, often in directions that challenge our traditional
way of thinking.

0.3 An Outline of Our Study

Founded in 1998, Google LLC (formerly Google Inc.) has become one of the world’s most recognized
technology companies. Its core service, the Google search engine, is used by millions of people to
find documents on the World Wide Web. In addition, Google provides electronic mail service (called
Gmail), an Internet-based video-sharing service (called YouTube), and a host of other Internet ser-
vices (including Google Maps, Google Calendar, Google Earth, Google Books, and Google Translate).

However, in addition to being a prime example of the entrepreneurial spirit, Google also provides
examples of how expanding technology is challenging society. For example, Google’s search engine
has led to questions regarding the extent to which an international company should comply with
the wishes of individual governments; YouTube has raised questions regarding the extent to which
a company should be liable for information that others distribute through its services as well as the
degree to which the company can claim ownership of that information; Google Books has generated
concerns regarding the scope and limitations of intellectual property rights; and Google Maps has

been accused of violating privacy rights.

N\

25

At the same time that desktop and laptop computers were being accepted
and used in homes, the miniaturization of computing machines continued.
Today, tiny computers are embedded within a wide variety of electronic appli-
ances and devices. Automobiles may now contain dozens of small computers
running Global Positioning Systems (GPS), monitoring the function of the
engine, and providing voice command services for controlling the car’s audio
and phone communication systems.

Perhaps the most revolutionary application of computer miniaturization
is found in the expanding capabilities of smartphones, hand-held general-
purpose computers on which telephony is only one of many applications.
More powerful than the supercomputers of prior decades, these pocket-sized
devices are equipped with a rich array of sensors and interfaces including
cameras, microphones, compasses, touch screens, accelerometers (to detect
the phone’s orientation and motion), and a number of wireless technologies
to communicate with other smartphones and computers. Many argue that the
smartphone is having a greater effect on global society than the PC revolution.

0.3 An Outline of Our Study

This text follows a bottom-up approach to the study of computer science,
beginning with such hands-on topics as computer hardware and leading to
the more abstract topics such as algorithm complexity and computability. The
result is that our study follows a pattern of building larger and larger abstract
tools as our understanding of the subject expands.

26

Chapter 0 Introduction

We begin by considering topics dealing with the design and construction
of machines for executing algorithms. In Chapter 1 (Data Storage), we look
at how information is encoded and stored within modern computers, and in
Chapter 2 (Data Manipulation), we investigate the basic internal operation
of a simple computer. Although part of this study involves technology, the
general theme is technology independent. That is, such topics as digital circuit
design, data encoding and compression systems, and computer architecture
are relevant over a wide range of technology and promise to remain relevant
regardless of the direction of future technology.

In Chapter 3 (Operating Systems), we study the software that controls the
overall operation of a computer. This software is called an operating system.
It is a computer’s operating system that controls the interface between the
machine and its outside world, protecting the machine and the data stored
within from unauthorized access, allowing a computer user to request the exe-
cution of various programs, and coordinating the internal activities required
to fulfill the user’s requests.

In Chapter 4 (Networking and the Internet), we study how computers
are connected to each other to form computer networks and how networks
are connected to form internets. This study leads to topics such as network
protocols, the Internet’s structure and internal operation, the World Wide
Web, and numerous issues of security.

Chapter 5 (Algorithms) introduces the study of algorithms from a more
formal perspective. We investigate how algorithms are discovered, identify
several fundamental algorithmic structures, develop elementary techniques
for representing algorithms, and introduce the subjects of algorithm efficiency
and correctness.

In Chapter 6 (Programming Languages), we consider the subject of algo-
rithm representation and the program development process. Here we find
that the search for better programming techniques has led to a variety of pro-
gramming methodologies or paradigms, each with its own set of programming
languages. We investigate these paradigms and languages as well as consider
issues of grammar and language translation.

Chapter 7 (Software Engineering) introduces the branch of computer
science known as software engineering, which deals with the problems
encountered when developing large software systems. The underlying theme
is that the design of large software systems is a complex task that embraces
problems beyond those of traditional engineering. Thus, the subject of soft-
ware engineering has become an important field of research within computer
science, drawing from such diverse fields as engineering, project manage-
ment, personnel management, programming language design, and even
architecture.

In the next two chapters, we look at ways data can be organized within a
computer system. In Chapter 8 (Data Abstractions), we introduce techniques
traditionally used for organizing data in a computer’s main memory and
then trace the evolution of data abstraction from the concept of primitives

0.4 The Overarching Themes of Computer Science

to today’s object-oriented techniques. In Chapter 9 (Database Systems), we
consider methods traditionally used for organizing data in a computer’s mass
storage and investigate how extremely large and complex database systems
are implemented.

In Chapter 10 (Computer Graphics), we explore the subject of graphics and
animation, a field that deals with creating and photographing virtual worlds.
Based on advancements in the more traditional areas of computer science
such as machine architecture, algorithm design, data structures, and software
engineering, the discipline of graphics and animation has seen significant prog-
ress and has now blossomed into an exciting, dynamic subject. Moreover, the
field exemplifies how various components of computer science combine with
other disciplines such as physics, art, and photography to produce striking results.

In Chapter 11 (Artificial Intelligence), we learn that to develop more
useful machines, computer science has turned to the study of human intel-
ligence for insight. The hope is that by understanding how our own minds
reason and perceive, researchers will be able to design algorithms that mimic
these processes and thus transfer comparable capabilities to machines. The
result is the area of computer science known as artificial intelligence, which
leans heavily on research in such areas as psychology, biology, and linguistics.

We close our study with Chapter 12 (Theory of Computation) by investi-
gating the theoretical foundations of computer science —a subject that allows
us to understand the limitations of algorithms (and thus machines). Here we
identify some problems that cannot be solved algorithmically (and therefore
lie beyond the capabilities of machines) as well as learn that the solutions to
many other problems require such enormous time or space that they are also
unsolvable from a practical perspective. Thus, it is through this study that we
are able to grasp the scope and limitations of algorithmic systems.

In each chapter, our goal is to explore the subject deeply enough to enable
true understanding. We want to develop a working knowledge of computer
science —a knowledge that will allow you to understand the technical society
in which you live and to provide a foundation from which you can learn on
your own as science and technology advance.

0.4 The Overarching Themes of Computer
Science

In addition to the main topics of each chapter as listed above, we also hope
to broaden your understanding of computer science by incorporating several
overarching themes. The miniaturization of computers and their expanding
capabilities have brought computer technology to the forefront of today’s
society, and computer technology is so prevalent that familiarity with it is
fundamental to being a member of the modern world. Computing technology

27

28

Chapter 0 Introduction

has altered the ability of governments to exert control; had enormous impact
on global economics; led to startling advances in scientific research; revolu-
tionized the role of data collection, storage, and applications; provided new
means for people to communicate and interact; and has repeatedly challenged
society’s status quo. The result is a proliferation of subjects surrounding com-
puter science, each of which is now a significant field of study in its own right.
Moreover, as with mechanical engineering and physics, it is often difficult to
draw a line between these fields and computer science itself. Thus, to gain a
proper perspective, our study will not only cover topics central to the core of
computer science but also will explore a variety of disciplines dealing with
both applications and consequences of the science. Indeed, an introduction
to computer science is an interdisciplinary undertaking.

As we set out to explore the breadth of the field of computing, it is helpful
to keep in mind the main themes that unite computer science. While the codi-
fication of the “Seven Big Ideas of Computer Science”! post-dates the first
ten editions of this book, they closely parallel the themes of the chapters to
come. The “Seven Big Ideas” are, briefly: Algorithms, Abstraction, Creativity,
Data, Programming, Internet, and Impact. In the chapters that follow, we
include a variety of topics, in each case introducing central ideas of the topic,
current areas of research, and some of the techniques being applied to
advance knowledge in that realm. Watch for the “Big Ideas” as we return to
them again and again.

Algorithms

Limited data storage capabilities and intricate, time-consuming program-
ming procedures restricted the complexity of the algorithms used in the ear-
liest computing machines. However, as these limitations began to disappear,
machines were applied to increasingly larger and more complex tasks. As
attempts to express the composition of these tasks in algorithmic form began
to tax the abilities of the human mind, more and more research efforts were
directed toward the study of algorithms and the programming process.

It was in this context that the theoretical work of mathematicians began to
pay dividends. As a consequence of Godel’s incompleteness theorem, mathe-
maticians had already been investigating those questions regarding algorithmic
processes that advancing technology was now raising. With that, the stage was
set for the emergence of a new discipline known as computer science.

Today, computer science has established itself as the science of algorithms.
The scope of this science is broad, drawing from such diverse subjects as
mathematics, engineering, psychology, biology, business administration, and
linguistics. Indeed, researchers in different branches of computer science may
have very distinct definitions of the science. For example, a researcher in the

Thttps://apstudent.collegeboard.org/apcourse/ap-computer-science-principles

http://https//apstudent.collegeboard.org/apcourse/ap%E2%80%90computer%E2%80%90science%E2%80%90principles

0.4 The Overarching Themes of Computer Science

field of computer architecture may focus on the task of miniaturizing circuitry
and thus view computer science as the advancement and application of tech-
nology. But a researcher in the field of database systems may see computer
science as seeking ways to make information systems more useful. And a
researcher in the field of artificial intelligence may regard computer science
as the study of intelligence and intelligent behavior.

Nevertheless, all of these researchers are involved in aspects of the science
of algorithms. Given the central role that algorithms play in computer science

(see Figure 0.5), it is instructive to identify some questions that will provide
focus for our study of this big idea.

e Which problems can be solved by algorithmic processes?

e How can the discovery of algorithms be made easier?

¢ How can the techniques of representing and communicating algorithms be
improved?

e How can the characteristics of different algorithms be analyzed and
compared?

e How can algorithms be used to manipulate information?

e How can algorithms be applied to produce intelligent behavior?

e How does the application of algorithms affect society?

Abstraction

The term abstraction, as we are using it here, refers to the distinction between
the external properties of an entity and the details of the entity’s internal
composition. It is abstraction that allows us to ignore the internal details of
a complex device such as a computer, automobile, or microwave oven and
use it as a single, comprehensible unit. Moreover, it is by means of abstrac-
tion that such complex systems are designed and manufactured in the first
place. Computers, automobiles, and microwave ovens are constructed from

Limitations of

Application of

Algorithms
Analysisof — — \I:I

\

Representation of

Figure 0.5 The central role of algorithms in computer science

29

30

Chapter 0 Introduction

components, each of which represents a level of abstraction at which the use
of the component is isolated from the details of the component’s internal
composition.

It is by applying abstraction that we are able to construct, analyze, and
manage large, complex computer systems, which would be overwhelming if
viewed in their entirety at a detailed level. At each level of abstraction, we
view the system in terms of components, called abstract tools, whose internal
composition we ignore. This allows us to concentrate on how each component
interacts with other components at the same level and how the collection as
a whole forms a higher-level component. Thus, we are able to comprehend
the part of the system that is relevant to the task at hand rather than being
lost in a sea of details.

We emphasize that abstraction is not limited to science and technology.
It is an important simplification technique with which our society has cre-
ated a lifestyle that would otherwise be impossible. Few of us understand
how the various conveniences of daily life are actually implemented. We eat
food and wear clothes that we cannot produce by ourselves. We use electrical
devices and communication systems without understanding the underlying
technology. We use the services of others without knowing the details of their
professions. With each new advancement, a small part of society chooses to
specialize in its implementation, while the rest of us learn to use the results as
abstract tools. In this manner, society’s warehouse of abstract tools expands,
and society’s ability to progress increases.

Abstraction is a recurring pillar of our study. We will learn that computing
equipment is constructed in levels of abstract tools. We will also see that the
development of large software systems is accomplished in a modular fashion
in which each module is used as an abstract tool in larger modules. Moreover,
abstraction plays an important role in the task of advancing computer science
itself, allowing researchers to focus attention on particular areas within a com-
plex field. In fact, the organization of this text reflects this characteristic of the
science. Each chapter, which focuses on a particular area within the science, is
often surprisingly independent of the others, yet together the chapters form
a comprehensive overview of a vast field of study.

Creativity

While computers may merely be complex machines mechanically executing
rote algorithmic instructions, we shall see that the field of computer science
is an inherently creative one. Discovering and applying new algorithms is a
human activity that depends on our innate desire to apply our tools to solve
problems in the world around us. Computer science not only extends forms
of expression spanning the visual, language, and musical arts, but also enables
new modes of digital expression that pervade the modern world.

Creating large software systems is much less like following a cookbook
recipe than it is like conceiving of a grand new sculpture. Envisioning its form

0.4 The Overarching Themes of Computer Science

and function requires careful planning. Fabricating its components requires
time, attention to detail, and practiced skill. The final product embodies the
design aesthetics and sensibilities of its creators.

Data

Computers are capable of representing any information that can be discretized
and digitized. Algorithms can process or transform such digitally represented
information in a dizzying variety of ways. The result of this is not merely the
shuffling of digital data from one part of the computer to another; computer
algorithms enable us to search for patterns, to create simulations, and to cor-
relate connections in ways that generate new knowledge and insight. Massive
storage capacities, high-speed computer networks, and powerful computa-
tional tools are driving discoveries in many other disciplines of science, engi-
neering and the humanities. Whether predicting the effects of a new drug by
simulating complex protein folding, statistically analyzing the evolution of
language across centuries of digitized books, or rendering 3D images of inter-
nal organs from a non-invasive medical scan, data is driving modern discovery
across the breadth of human endeavors.

Some of the questions about data that we will explore in our study include:

e How do computers store data about common digital artifacts, such as
numbers, text, images, sounds, and video?

e How do computers approximate data about analog artifacts in the real world?
¢ How do computers detect and prevent errors in data?

e What are the ramifications of an ever-growing and interconnected digital
universe of data at our disposal?

Programming

Translating human intentions into executable computer algorithms is now
broadly referred to as programming, although the proliferation of languages
and tools available now bear little resemblance to the programmable com-
puters of the 1950s and early 1960s. While computer science consists of much
more than computer programming, the ability to solve problems by devising
executable algorithms (programs) remains a foundational skill for all com-
puter scientists.

Computer hardware is capable of executing only relatively simple algo-
rithmic steps, but the abstractions provided by computer programming lan-
guages allow humans to reason about and encode solutions for far more
complex problems. Several key questions will frame our discussion of this
theme.

e How are programs built?
e What kinds of errors can occur in programs?

31

32

Chapter 0 Introduction

e How are errors in programs found and repaired?
e What are the effects of errors in modern programs?
e How are programs documented and evaluated?

Internet

The Internet connects computers and electronic devices around the world,
and has had a profound impact in the way that our technological society
stores, retrieves, and shares information. Commerce, news, entertainment,
and communication now depend increasingly on this interconnected web of
smaller computer networks. Our discussion will not only describe the mecha-
nisms of the Internet as an artifact, but will also touch on the many aspects of
human society that are now intertwined with the global network.

The reach of the Internet also has profound implications for our privacy
and the security of our personal information. Cyberspace harbors many
dangers. Consequently, cryptography and cybersecurity are of growing impor-
tance in our connected world.

Impact

Computer science not only has profound impacts on the technologies we use
to communicate, work, and play; it also has enormous social repercussions.
Progress in computer science is blurring many distinctions on which our soci-
ety has based decisions in the past and is challenging many of society’s long-
held principles. In law, it generates questions regarding the degree to which
intellectual property can be owned and the rights and liabilities that accom-
pany that ownership. In ethics, it generates numerous options that challenge
the traditional principles on which social behavior is based. In government,
it generates debates regarding the extent to which computer technology and
its applications should be regulated. In philosophy, it generates contention
between the presence of intelligent behavior and the presence of intelligence
itself. And, throughout society, it generates disputes concerning whether new
applications represent new freedoms or new controls.

Such topics are important for those contemplating careers in computing
or computer-related fields. Revelations within science have sometimes found
controversial applications, causing serious discontent for the researchers
involved. Moreover, an otherwise successful career can quickly be derailed
by an ethical misstep.

The ability to deal with the dilemmas posed by advancing computer
technology is also important for those outside its immediate realm. Indeed,
technology is infiltrating society so rapidly that few, if any, are independent
of its effects.

0.4 The Overarching Themes of Computer Science

This text provides the technical background needed to approach the
dilemmas generated by computer science in a rational manner. However,
technical knowledge of the science alone does not provide solutions to all
the questions involved. With this in mind, this text includes several sections
that are devoted to social, ethical, and legal impacts of computer science.
These include security concerns, issues of software ownership and liability,
the social impact of database technology, and the consequences of advances
in artificial intelligence.

Moreover, there is often no definitive correct answer to a problem, and
many valid solutions are compromises between opposing (and perhaps
equally valid) views. Finding solutions in these cases often requires the ability
to listen, to recognize other points of view, to carry on a rational debate, and
to alter one’s own opinion as new insights are gained. Thus, each chapter of
this text ends with a collection of questions under the heading “Social Issues”
that investigate the relationship between computer science and society. These
are not necessarily questions to be answered. Instead, they are questions to
be considered. In many cases, an answer that may appear obvious at first will
cease to satisfy you as you explore alternatives. In short, the purpose of these
questions is not to lead you to a “correct” answer, but rather to increase your
awareness, including your awareness of the various stakeholders in an issue,
your awareness of alternatives, and your awareness of both the short- and
long-term consequences of those alternatives.

Philosophers have introduced many approaches to ethics in their search
for fundamental theories that lead to principles for guiding decisions and
behavior.

Character-based ethics (sometimes called virtue ethics) were promoted
by Plato and Aristotle, who argued that “good behavior” is not the result of
applying identifiable rules, but instead is a natural consequence of “good
character.” Whereas other ethical bases, such as consequence-based ethics,
duty-based ethics, and contract-based ethics propose that a person resolve
an ethical dilemma by asking, “What are the consequences?’, “What are my
duties?’; or “What contracts do I have?’; respectively, character-based ethics
proposes that dilemmas be resolved by asking, “Who do I want to be?” Thus,
good behavior is obtained by building good character, which is typically the
result of sound upbringing and the development of virtuous habits.

It is character-based ethics that underlies the approach normally taken
when “teaching” ethics to professionals in various fields. Rather than pre-
senting specific ethical theories, the approach is to introduce case studies
that expose a variety of ethical questions in the professionals’ area of exper-
tise. Then, by discussing the pros and cons in these cases, the professionals
become more aware, insightful, and sensitive to the perils lurking in their
professional lives and thus grow in character. This is the spirit in which the
questions regarding social issues at the end of each chapter are presented.

33

34 Chapter 0 Introduction

g B sociauissues N

. The following questions are intended as a guide to the ethical/social/legal
issues associated with the field of computing. The goal is not merely to answer
these questions. You should also consider why you answered as you did and
whether your justifications are consistent from one question to the next.
1. The premise that our society is different from what it would have
been without the computer revolution is generally accepted. Is our
society better than it would have been without the revolution? Is
our society worse? Would your answer differ if your position within
society were different?

2. Is it acceptable to participate in today’s technical society without
making an effort to understand the basics of that technology? For
instance, do members of a democracy, whose votes often determine

. how technology will be supported and used, have an obligation to
try to understand that technology? Does your answer depend on
which technology is being considered? For example, is your answer

. the same when considering nuclear technology as when considering
computer technology?

3. By using cash in financial transactions, individuals have traditionally
had the option to manage their financial affairs without service
charges. However, as more of our economy is becoming automated,

. financial institutions are implementing service charges for access
to these automated systems. Is there a point at which these charges

. unfairly restrict an individual’s access to the economy? For example,
suppose an employer pays employees only by check, and all financial
institutions were to place a service charge on check cashing and
depositing. Would the employees be unfairly treated? What if an
employer insists on paying only via direct deposit?

. 4. In the context of interactive television, to what extent should a
company be allowed to retrieve information from children (perhaps
via an interactive game format)? For example, should a company
be allowed to obtain a child’s report on his or her parents’ buying

. patterns? What about information about the child?

5. To what extent should a government regulate computer technology
and its applications? Consider, for example, the issues mentioned in
Questions 3 and 4. What justifies governmental regulation?

6. To what extent will our decisions regarding technology in general,
and computer technology in particular, affect future generations?

. 7. As technology advances, our educational system is constantly
challenged to reconsider the level of abstraction at which topics
are presented. Many questions take the form of whether a skill is
still necessary or whether students should be allowed to rely on an

10.

11.

12.

13.

14.

15.

Social Issues

abstract tool. Students of trigonometry are no longer taught how to
find the values of trigonometric functions using tables. Instead, they
use calculators as abstract tools to find these values. Some argue that
long division should also give way to abstraction. What other subjects
are involved with similar controversies? Do modern word processors
eliminate the need to develop spelling skills? Will the use of video
technology someday remove the need to read?

. The concept of public libraries is largely based on the premise that

all citizens in a democracy must have access to information. As more
information is stored and disseminated via computer technology, does
access to this technology become a right of every individual? If so,
should public libraries be the channel by which this access is provided?

. What ethical concerns arise in a society that relies on the use of

abstract tools? Are there cases in which it is unethical to use a
product or service without understanding how it works? Without
knowing how it is produced? Or without understanding the
byproducts of its use?

As our society becomes more automated, it becomes easier for
governments to monitor their citizens’ activities. Is that good or bad?

Which technologies that were imagined by George Orwell (Eric
Blair) in his novel 71984 have become reality? Are they being used in
the manner in which Orwell predicted?

If you had a time machine, in which period of history would you
like to live? Are there current technologies that you would like to
take with you? Could your choice of technologies be taken with
you without taking others? To what extent can one technology be
separated from another? Is it consistent to protest against global
warming yet accept modern medical treatment?

Suppose your job requires that you reside in another culture. Should
you continue to practice the ethics of your native culture or adopt
the ethics of your host culture? Does your answer depend on
whether the issue involves dress code or human rights? Which ethical
standards should prevail if you continue to reside in your native
culture but conduct business with a foreign culture on the Internet?

Has society become too dependent on computer applications for
commerce, communications, or social interactions? For example,
what would be the consequences of a long-term interruption in
Internet and/or cellular telephone service?

Most smartphones are able to identify the phone’s location by means of
GPS. This allows applications to provide location-specific information
(such as the local news, local weather, or the presence of businesses in
the immediate area) based on the phone’s current location. However,
such GPS capabilities may also allow other applications to broadcast
the phone’s location to other parties. Is this good? How could
knowledge of the phone’s location (thus your location) be abused?

35

36 Chapter 0 Introduction

g B AooimonAL ReADiING [

. Goldstine, H. H. The Computer from Pascal to von Neumann. Princeton, NJ:
Princeton University Press, 1972.

Haigh, T., M. Priestley, and C. Rope. ENIAC in Action: Making and Remaking
the Modern Computer. Cambridge, MA: The MIT Press, 2016.

Kizza, J. M. Ethical and Social Issues in the Information Age, 5th ed. London:
Springer-Verlag, 2013.

Mollenhoff, C. R. Atanasoff: Forgotten Father of the Computer. Ames, [A:
Iowa State University Press, 1988.

Neumann, P. G. Computer Related Risks. Boston, MA: Addison-Wesley, 1995.

Quinn, M. J. Ethics for the Information Age, 7th ed. Essex, England: Pearson,
2016.

Randell, B. The Origins of Digital Computers, 3rd ed. New York: Springer-
Verlag, 1982.

Spinello, R. A. and H. T. Tavani. Readings in CyberEthics,2nd ed. Sudbury,
MA: Jones and Bartlett, 2004.

Swade, D. The Difference Engine. New York: Viking, 2000.

Tavani, H. T. Ethics and Technology: Controversies, Questions, and Strategies
for Ethical Computing, Sth ed. New York: Wiley, 2016.

Woolley, B. The Bride of Science: Romance, Reason, and Byron’s Daughter.
New York: McGraw-Hill, 1999.

This page intentionally left blank

Chapter

In this chapter, we consider topics associated with data representation and
the storage of data within a computer. The types of data we will consider
include text, numeric values, images, audio, and video. Much of the informa-
tion in this chapter is also relevant to fields other than traditional comput-
ing, such as digital photography, audio/video recording and reproduction,
and long-distance communication.

1.1 BITS AND THEIR STORAGE *1.6 STORING INTEGERS
Boolean Operations Two’s Complement Notation
Gates and Flip-Flops Excess Notation
Hexadecimal Notation
*1.7 STORING FRACTIONS
1.2 MAIN MEMORY Floating-Point Notation
Memory Organization Truncation Errors

Measuring Memory Capacity *1.8 DATA AND PROGRAMMING

1.3 MASS STORAGE Getting Started With Python
Magnetic Systems Hello, Python
Optical Systems Variables
Flash Drives Operators and Expressions
File Storage and Retrieval Currency Conversion
1.4 REPRESENTING INFORMATION Debugging
AS BIT PATTERNS *1.9 DATA COMPRESSION
Representing Text Generic Data Compression
Representing Numeric Values Techniques
Representing Images Compressing Images
Representing Sound Compressing Audio and Video
*1.5 THE BINARY SYSTEM *1.10 COMMUNICATION ERRORS
Binary Notation Parity Bits
Binary Addition Error-Correcting Codes

Fractions in Binary

*Asterisks indicate suggestions for optional
sections.

Data Storage

ENDURING UNDERSTANDINGS AND LEARNING OUTCOMES

Computing enables people to use There are trade offs when representing
creative development processes to information as digital data.

create computational artifacts for LO. Analyze how data representation,

creative expression or to solve a storage, security, and transmission of data
problem. [afes, involve computational manipulation of

LO. Create a computational artifact for information.

creative expression. o . .
Programming is facilitated by appropriate

A variety of abstractions built upon abstractions.
binary sequences can be used to repre- LO. Use abstraction to manage complexity
sent all digital data. in programs.

LO. Describe the variety of abstractions

used to represent data. Programs are developed, maintained,

and used by people for different

LO. Explain how binary sequences are purposes. [Nl
used to represent digital data.
LO. Evaluate the correctness of a program.

Multiple levels of abstraction are used to

write programs or create other computa- Prqgramming uses mathematical and
tional artifacts. [Nl logical concepts.

LO. Employ appropriate mathematical

LO. Identify multiple levels of abstrac-
and logical concepts in programming.

tions that are used when writing programs.

40

Chapter 1 Data Storage

Humans use computers to create. Software packages, digital media, web con-
tent, data sets, models, and simulations—all of these are examples of compu-
tational artifacts people create using computational tools and abstractions.
We begin our study of computer science by considering how these computa-
tional artifacts are encoded and stored inside computers. Our first step is to
discuss the basics of a computer’s data storage devices and then to consider
how information is encoded for storage in these systems. The sheer complex-
ity of these systems requires powerful abstractions at many levels, from the
simplest hardware gates built from electronic switches to the highest level
programming languages that we use to encode our commands to the com-
puter as software.

\)) Essential Knowledge Statements

e A computational artifact is anything created by a human using a computer and
can be, but is not limited to, a program, an image, audio, video, a presentation,
or a web page file.

1.1 Bits and Their Storage

Abstractions allow us to represent many kinds of data, but at the lowest level,
inside today’s computers all information is encoded as patterns of Os and 1s.
These digits are called bits (short for binary digits). Although you may be
inclined to associate bits with numeric values, they are really only symbols
whose meaning depends on the application at hand. Sometimes patterns of
bits are used to represent numeric values; sometimes they represent charac-
ters in an alphabet and punctuation marks; sometimes they represent color
and images; and sometimes they represent sounds.

\/}) Essential Knowledge Statements

e Digital data is represented by abstractions at different levels.

e At the lowest level, all digital data are represented by bits.

e At a higher level, bits are grouped to represent abstractions, including but not
limited to numbers, characters, and color.

e At one of the lowest levels of abstraction, digital data is represented in binary
(base 2) using only combinations of the digits zero and one.

1.1 Bits and Their Storage

Boolean Operations

To understand how individual bits are stored and manipulated inside a com-
puter, it is convenient to imagine that the bit 0 represents the value false
and the bit 1 represents the value true. Operations that manipulate true/false
values are called Boolean operations, in honor of the mathematician George
Boole (1815-1864), who was a pioneer in the field of mathematics called logic.
Three of the basic Boolean operations are AND, OR, and XOR (exclusive or),
as summarized in Figure 1.1. (We capitalize these Boolean operation names to
distinguish them from their English word counterparts.) These operations are
similar to the arithmetic operations TIMES and PLUS because they combine
a pair of values (the operation’s input) to produce a third value (the output).
In contrast to arithmetic operations, however, Boolean operations combine
true/false values rather than numeric values.

The Boolean operation AND is designed to reflect the truth or falseness
of a statement formed by combining two smaller, or simpler, statements with
the conjunction and. Such statements have the generic form

PAND Q
where P represents one statement, and Q represents another — for example,

Kermit is a frog AND Miss Piggy is an actress.

The inputs to the AND operation represent the truth or falseness of
the compound statement’s components; the output represents the truth or

The AND operation
0 0 1 1
AND 0 AND 1 AND 0 AND 1
0 0 0 1
The OR operation
0 0 1 1
OR 0 OR 1 OR 0 OR 1
0 1 1 1
The XOR operation
0 0 1 1
XO0R 0 XO0R 1 X0R 0 X0R 1
0 1 1 0

Figure 1.1 The possible input and output values of Boolean operations AND, OR, and
XOR (exclusive or)

41

42

Chapter 1 Data Storage

falseness of the compound statement itself. Since a statement of the form P
AND Q is true only when both of its components are true, we conclude that
1 AND 1 should be 1, whereas all other cases should produce an output of 0,
in agreement with Figure 1.1.

In a similar manner, the OR operation is based on compound statements
of the form

PORQ

where, again, P represents one statement and Q represents another. Such
statements are true when at least one of their components is true, which
agrees with the OR operation depicted in Figure 1.1.

There is not a single conjunction in the English language that captures the
meaning of the XOR operation. XOR produces an output of 1 (true) when
one of its inputs is 1 (true) and the other is 0 (false). For example, a statement
of the form P XOR Q means “either P or Q but not both.” (In short, the XOR
operation produces an output of 1 when its inputs are different.)

The operation NOT is another Boolean operation. It differs from AND,
OR, and XOR because it has only one input. Its output is the opposite of that
input; if the input of the operation NOT is true, then the output is false, and
vice-versa. Thus, if the input of the NOT operation is the truth or falseness
of the statement

Fozzie is a bear.

then the output would represent the truth or falseness of the statement

Fozzie is not a bear.

Gates and Flip-Flops

A device that produces the output of a Boolean operation when given the
operation’s input values is called a gate, or sometimes a logic gate. Gates can
be constructed from a variety of technologies such as gears, relays, and optic
devices. Inside today’s computers, gates are usually constructed out of small
electronic switching circuits called transistors. The digits 0 and 1 are repre-
sented as voltage levels. We need not concern ourselves with such details,
however. For our purposes, it suffices to represent gates in their symbolic
form, as shown in Figure 1.2. Note that the AND, OR, XOR, and NOT gates
are represented by distinctively shaped symbols, with the input values enter-
ing on one side, and the output exiting on the other.

\/}) Essential Knowledge Statements

e Alogic gate is a hardware abstraction that is modeled by a Boolean function.

1.1 Bits and Their Storage

AND OR

Inputs Output Inputs :Df Output
Inputs Output Inputs Output
00 0 00 0
01 0 01 d
10 0 10 1
11 1 11 1

XOR NOT

Inputs 'D Output Inputs —Do— Output
Inputs Output Inputs Output
00 0 0 1
01 1 1 0
10 1
11 0

Figure 1.2 A pictorial representation of AND, OR, XOR, and NOT gates as well as their
input and output values

Gates provide the building blocks from which computers are con-
structed. As a result, Boolean logic and operators appear as fundamental
operations in our programming languages. One important step in this
direction is depicted in the circuit in Figure 1.3. This is a particular exam-
ple from a component known as a flip-flop. A flip-flop is a fundamental
unit of computer memory. It is a circuit that produces an output value
of 0 or 1, which remains constant until a pulse (a temporary change to
a 1 that returns to 0) from another circuit causes it to shift to the other
value. In other words, the output can be set to “remember” a zero or a one
under control of external stimuli. As long as both inputs in the circuit in
Figure 1.3 remain 0, the output (whether 0 or 1) will not change. However,
temporarily placing a 1 on the upper input will force the output to be 1,
whereas temporarily placing a 1 on the lower input will force the output
to be 0.

\)) Essential Knowledge Statements

e | ogical concepts and Boolean algebra are fundamental to programming.

43

44 Chapter 1 Data Storage

Input

Input >—>o—
I_

Figure 1.3 A simple flip-flop circuit

——> Output

Let us consider this claim in more detail. Without knowing the current
output of the circuit in Figure 1.3, suppose that the upper input is changed to
1 while the lower input remains 0 (Figure 1.4a). This will cause the output of
the OR gate to be 1, regardless of the other input to this gate. In turn, both
inputs to the AND gate will now be 1, since the other input to this gate is
already 1 (the output produced by the NOT gate whenever the lower input
of the flip-flop is at 0). The output of the AND gate will then become 1, which
means that the second input to the OR gate will now be 1 (Figure 1.4b). This
guarantees that the output of the OR gate will remain 1, even when the upper
input to the flip-flop is changed back to 0 (Figure 1.4c). In summary, the flip-
flop’s output has become 1, and this output value will remain after the upper
input returns to 0.

In a similar manner, temporarily placing the value 1 on the lower input
will force the flip-flop’s output to be 0, and this output will persist after the
input value returns to 0.

a. First, a 1is placed on the b. This causes the output of the OR gate to be 1 and,
upper input. in turn, the output of the AND gate to be 1.

0 >—P>e— 0>—[>o|1—_ 1 :

-

c. Finally, the 1 from the AND gate keeps the OR gate from
changing after the upper input returns to 0.

0 >t 1 .
.

Figure 1.4 Setting the output of a flip-flop to 1

1.1 Bits and Their Storage

Our purpose in introducing the flip-flop circuit in Figures 1.3 and 1.4 is
threefold. First, it demonstrates how devices can be constructed from gates,
a process known as digital circuit design, which is an important topic in com-
puter engineering. Indeed, the flip-flop is only one of many circuits that are
basic tools in computer engineering.

Second, the concept of a flip-flop provides an example of abstraction and
the use of abstract tools. Actually, there are other ways to build a flip-flop.
One alternative is shown in Figure 1.5. If you experiment with this circuit,
you will find that, although it has a different internal structure, its external
properties are the same as those of Figure 1.3. A computer engineer does not
need to know which circuit is actually used within a flip-flop. Instead, only
an understanding of the flip-flop’s external properties is needed to use it
as an abstract tool. A flip-flop, along with other well-defined circuits, forms
a set of component building blocks from which an engineer can construct
more complex circuitry. In turn, the design of computer circuitry takes on a
hierarchical structure, each level of which uses the lower level components
as abstract tools.

The third purpose for introducing the flip-flop is that it is one means of
storing a bit within a modern computer. More precisely, a flip-flop can be set
to have the output value of either 0 or 1. Other circuits can adjust this value
by sending pulses to the flip-flop’s inputs, and still other circuits can respond
to the stored value by using the flip-flop’s output as their inputs. Thus, many
flip-flops, constructed as very small electrical circuits, can be used inside a
computer as a means of recording information that is encoded as patterns of
0Os and 1s. Indeed, technology known as very large-scale integration (VLSI),
which allows millions of electrical components to be constructed on a semi-
conductor wafer (called a chip), is used to create miniature devices containing
millions of flip-flops along with their controlling circuitry. Consequently, these
chips are used as abstract tools in the construction of higher level components
in computer systems. In fact, in some cases, VLSI is used to create an entire
computer system on a single chip.

Input DC

Output
Input DC P

Figure 1.5 Another way of constructing a flip-flop

45

46

Chapter 1 Data Storage

\)) Essential Knowledge Statements

e Binary data is processed by physical layers of computing hardware, including
gates, chips, and components.

e Hardware is built using multiple levels of abstractions, such as transistors, logic
gates, chips, memory, motherboards, special purposes cards, and storage devices.

Hexadecimal Notation

When considering the internal activities of a computer, we must deal with
patterns of bits, which we will refer to as a string of bits, some of which
can be quite long. A long string of bits is often called a stream. Unfortu-
nately, streams are difficult for the human mind to comprehend. Merely
transcribing the pattern 101101010011 is tedious and error prone. To sim-
plify the representation of such bit patterns, therefore, we usually use a
shorthand notation called hexadecimal notation, which takes advantage of
the fact that bit patterns within a machine tend to have lengths in mul-
tiples of four. In particular, hexadecimal notation uses a single symbol to
represent a pattern of four bits. For example, a string of twelve bits can be
represented by three hexadecimal symbols. Mathematicians normally use
subscripts to indicate the base of a non-decimal number, and so might write
the hexadecimal value for 15, as F;4. Computer scientists, accustomed
to programming in text-based languages that do not support subscripting,
frequently use prefixes to indicate the base of a non-decimal number. For
clarity in this text, we will also use the common prefix “0x” in front of our
hexadecimal numbers.

\)) Essential Knowledge Statements

e Hexadecimal (base 16) is used to represent digital data because hexadecimal
representation uses fewer digits than binary.

Figure 1.6 presents the hexadecimal encoding system. The left column
displays all possible bit patterns of length four; the right column shows the
symbol used in hexadecimal notation to represent the bit pattern to its left.
Using this system, the bit pattern 10110101 is represented as 0xBS5. This is
obtained by dividing the bit pattern into substrings of length four and then
representing each substring by its hexadecimal equivalent—1011 is repre-
sented by 0xB, and 0101 is represented by 0x5. In this manner, the 16-bit pat-
tern 1010010011001000 can be reduced to the more palatable form OxA4CS.
We will use hexadecimal notation extensively in the next chapter. There you
will come to appreciate its efficiency.

Hexadecimal
Bit pattern representation

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Figure 1.6 The hexadecimal encoding system

1.1 Questions & Exercises

produce an output of 1?

input is temporarily set to 1.

does the circuit compute?

Input Dc

Input Dc

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
OxE
OxF

1. What input bit patterns will cause the following circuit to

Inputs iZ)D — Qutput
S = @

2. In the text, we claimed that placing a 1 on the lower input of the
flip-flop in Figure 1.3 (while holding the upper input at 0) will
force the flip-flop’s output to be 0. Describe the sequence of
events that occurs within the flip-flop in this case.

3. Assuming that both inputs to the flip-flop in Figure 1.5 begin as
0, describe the sequence of events that occurs when the upper

4. a. If the output of an AND gate is passed through a NOT gate,
the combination computes the Boolean operation called
NAND, which has an output of 0 only when both its inputs
are 1. The symbol for a NAND gate is the same as an AND
gate except that it has a circle at its output. The following is
a circuit containing a NAND gate. What Boolean operation

L
[

1.1 Bits and Their Storage

47

48

Chapter 1 Data Storage

b. If the output of an OR gate is passed through a NOT gate, the
combination computes the Boolean operation called NOR
that has an output of 1 only when both its inputs are 0. The
symbol for a NOR gate is the same as an OR gate except
that it has a circle at its output. The following is a circuit
containing an AND gate and two NOR gates. What Boolean
operation does the circuit compute?

Input

Output

Input >

5. Use hexadecimal notation to represent the following bit

patterns:
a.0110101011110010 b. 111010000101010100010111
¢. 01001000
6. What bit patterns are represented by the following hexadecimal
patterns?
N a. 0xSFD97 b. 0x610A c¢. 0xABCD d. 0x0100)

1.2 Main Memory

For the purpose of storing data, a computer contains a large collection of cir-
cuits (such as flip-flops), each capable of storing a single bit. This bit reservoir
is known as the machine’s main memory.

Memory Organization

A computer’s main memory is organized in manageable units called cells,
with a typical cell size being eight bits. (A string of eight bits is called a byte.
Thus, a typical memory cell has a capacity of one byte.) Small computers
embedded in such household devices as thermostats and microwave ovens
may have main memories consisting of only a few hundred cells, whereas
desktop computers and smartphones may have billions of cells in their main
memories.

Although there is no left or right within a computer, we normally envi-
sion the bits within a memory cell as being arranged in a row. The left end of
this row is called the high-order end, and the right end is called the low-order
end. The leftmost bit is called either the high-order bit or the most significant

High-orderend 0 1 0 1 1 0 1 0 Low-orderend
Most Least
significant significant
bit bit

Figure 1.7 The organization of a byte-size memory cell

bit in reference to the fact that if the contents of the cell were interpreted as
representing a numeric value, this bit would be the most significant digit in
the number. Similarly, the rightmost bit is referred to as the low-order bit or
the least significant bit. Thus, we may represent the contents of a byte-size
memory cell as shown in Figure 1.7

To identify individual cells in a computer’s main memory, each cell is
assigned a unique “name,” called its address. The system is analogous to the
technique of identifying houses in a city by addresses. In the case of memory
cells, however, the addresses used are entirely numeric. To be more precise, we
envision all the cells being placed in a single row and numbered in this order
starting with the value zero. Such an addressing system not only gives us a
way of uniquely identifying each cell but also associates an order to the cells
(Figure 1.8), giving us phrases such as “the next cell” or “the previous cell.”

An important consequence of assigning an order to both the cells in main
memory and the bits within each cell is that the entire collection of bits within
a computer’s main memory is essentially ordered in one long row. Pieces of
this long row can therefore be used to store bit patterns that may be longer
than the length of a single cell. In particular, we can still store a string of 16
bits merely by using two consecutive memory cells.

To complete the main memory of a computer, the circuitry that actually
holds the bits is combined with the circuitry required to allow other circuits
to store and retrieve data from the memory cells. In this way, other circuits
can get data from the memory by electronically asking for the contents of a

0

01101101 (7

o

10001101 [4

10111010

oo

Figure 1.8 Memory cells arranged by address

1.2 Main Memory

49

50

Chapter 1 Data Storage

certain address (called a read operation), or they can record information in
the memory by requesting that a certain bit pattern be placed in the cell at a
particular address (called a write operation).

Because a computer’s main memory is organized as individual, address-
able cells, the cells can be accessed independently as required. To reflect the
ability to access cells in any order, a computer’s main memory is often called
random access memory (RAM). This random access feature of main memory
is in stark contrast to the mass storage systems that we will discuss in the next
section, in which long strings of bits are manipulated as amalgamated blocks.

Although we have introduced flip-flops as a means of storing bits,
the RAM in most modern computers is constructed using analogous, but
more complex technologies that provide greater miniaturization and faster
response time. Many of these technologies store bits as tiny electric charges
that dissipate quickly. Thus, these devices require additional circuitry, known
as a refresh circuit, that repeatedly replenishes the charges many times a
second. In recognition of this volatility, computer memory constructed from
such technology is often called dynamic memory, leading to the term DRAM
(pronounced “DEE-ram”), meaning Dynamic RAM. Or, at times the term
SDRAM (pronounced “ES-DEE-ram”), meaning Synchronous DRAM, is
used in reference to DRAM that applies additional techniques to decrease
the time needed to retrieve the contents from its memory cells.

Measuring Memory Capacity

As we will learn in the next chapter, it is convenient to design main memory sys-
tems in which the total number of cells is a power of two. In turn, the size of the
memories in early computers were often measured in 1024 (which is 21°) cell
units. Since 1024 is close to the value 1000, the computing community adopted
the prefix kilo in reference to this unit. That is, the term kilobyte (abbreviated
KB) was used to refer to 1024 bytes. Thus, a machine with 4096 memory cells
was said to have a4KB memory (4096 = 4 X 1024). As memories became
larger, this terminology grew to include MB (megabyte), GB (gigabyte), and
TB (terabyte). Unfortunately, this application of prefixes kilo-, mega-, and so
on, represents a misuse of terminology because these are already used in other
fields in reference to units that are powers of a thousand. For example, when
measuring distance, kilometer refers to 1000 meters, and when measuring radio
frequencies, megahertz refers to 1,000,000 hertz. In the late 1990s, international
standards organizations developed specialized terminology for powers of two:
kibi-, mebi-, gibi- and tebi-bytes denote powers of 1024, rather than powers
of a thousand. However, while this distinction is the law of the land in many
parts of the world, both the general public and many computer scientists have
been reluctant to abandon the more familiar, yet ambiguous “megabyte” Thus,
a word of caution is in order when using this terminology. As a general rule,
terms such as kilo-, mega-, etc. refer to powers of two when used in the context
of computer measurements, but they refer to powers of a thousand when used
in other contexts.

1.2 Questions & Exercises

1. If the memory cell whose address is 5 contains the value 8, what
is the difference between writing the value 5 into cell number 6
and moving the contents of cell number 5 into cell number 6?

2. Suppose you want to interchange the values stored in memory
cells 2 and 3. What is wrong with the following sequence of steps:
Step 1. Move the contents of cell number 2 to cell number 3.
Step 2. Move the contents of cell number 3 to cell number 2.

3. Design a sequence of steps that correctly interchanges the
contents of these cells. If needed, you may use additional cells.

4. How many bits would be in the memory of a computer with 4KB
memory?

- J

1.3 Mass Storage

Due to the volatility and limited size of a computer’s main memory, most
computers have additional memory devices called mass storage (or second-
ary storage) systems, including magnetic disks, CDs, DVDs, magnetic tapes,
flash drives, and solid-state drives (all of which we will discuss shortly). The
advantages of mass storage systems over main memory include less volatility,
large storage capacities, low cost, and in many cases, the ability to remove the
storage medium from the machine for archival purposes.

A major disadvantage of magnetic and optical mass storage systems is that
they typically require mechanical motion and therefore require significantly
more time to store and retrieve data than a machine’s main memory, where all
activities are performed electronically. Moreover, storage systems with mov-
ing parts are more prone to mechanical failures than solid state systems. While
flash drives and solid-state disks do not require moving parts, other electronic
considerations can limit their speed or longevity relative to main memory.

\/b) Essential Knowledge Statements

e The choice of storage media affects both the methods and costs of manipulating
the data it contains.

Magnetic Systems

For years, magnetic technology has dominated the mass storage arena. The
most common example in use today is the magnetic disk or hard disk drive
(HDD), in which a thin, spinning disk with magnetic coating is used to hold

1.3 Mass Storage

51

52

Chapter 1 Data Storage

data (Figure 1.9). Read/write heads are placed above and/or below the disk
so that as the disk spins, each head traverses a circle, called a track. By repo-
sitioning the read/write heads, different concentric tracks can be accessed.
In many cases, a disk storage system consists of several disks mounted on a
common spindle, one on top of the other, with enough space for the read/
write heads to slip between the platters. In such cases, the read/write heads
move in unison. Each time the read/write heads are repositioned, a new set
of tracks — which is called a cylinder — becomes accessible.

Since a track can contain more information than we would normally want
to manipulate at any one time, each track is divided into small arcs called
sectors on which information is recorded as a continuous string of bits. All
sectors on a disk contain the same number of bits (typical capacities are in
the range of 512 bytes to a few KB), and in the simplest disk storage systems,
each track contains the same number of sectors. Thus, the bits within a sec-
tor on a track near the outer edge of the disk are less compactly stored than
those on the tracks near the center, since the outer tracks are longer than
the inner ones. In contrast, in high capacity disk storage systems, the tracks
near the outer edge are capable of containing significantly more sectors than
those near the center, and this capability is often used by applying a technique
called zoned-bit recording. Using zoned-bit recording, several adjacent tracks
are collectively known as zones, with a typical disk containing approximately
ten zones. All tracks within a zone have the same number of sectors, but each
zone has more sectors per track than the zone inside of it. In this manner,
efficient use of the entire disk surface is achieved. Regardless of the details, a
disk storage system consists of many individual sectors, each of which can be
accessed as an independent string of bits.

The capacity of a disk storage system depends on the number of plat-
ters used and the density in which the tracks and sectors are placed. Lower-
capacity systems may consist of a single platter, especially where physical size
of the HDD must remain compact. High-capacity disk systems, capable of
holding many terabytes, consist of perhaps three to six platters mounted on
a common spindle. Furthermore, data may be stored on both the upper and
lower surfaces of each platter.

Track divided
into sectors

Disk

Read/write head

Access arm

Arm motion

Disk motion

Figure 1.9 A disk storage system

Several measurements are used to evaluate a disk system’s performance:
(1) seek time (the time required to move the read/write heads from one track
to another); (2) rotational delay (half the time required for the disk to make
a complete rotation, which is the average amount of time required for the
desired data to rotate around to the read/write head once the head has been
positioned over the desired track); (3) access time (the sum of seek time and
rotational delay); and (4) transfer rate (the rate at which data can be trans-
ferred to or from the disk). (Note that in the case of zone-bit recording, the
amount of data passing a read/write head in a single disk rotation is greater
for tracks in an outer zone than for an inner zone, and therefore, the data
transfer rate varies depending on the portion of the disk being used.) Other
important performance metrics for evaluating both mass storage and more
general communications systems include: (1) bandwidth (the total amount
of bits that can be transferred in a unit of time, e.g., 3 megabits per second);
and (2) latency (the total time between the request for a data transfer and
its arrival).

A factor limiting the access time and transfer rate is the speed at which a
disk system rotates. To facilitate fast rotation speeds, the read/write heads in
these systems do not touch the disk but instead “float” just off the surface. The
spacing is so close that even a single particle of dust could become jammed
between the head and disk surface, destroying both (a phenomenon known
as a head crash). Thus, disk systems are typically housed in cases that are
sealed at the factory. With this construction, disk systems are able to rotate
at speeds of several hundred times per second, achieving transfer rates that
are measured in MB per second.

Since disk systems require physical motion for their operation, these sys-
tems suffer when compared to speeds within electronic circuitry. Delay times
within an electronic circuit are measured in units of nanoseconds (billionths
of a second) or less, whereas seek times, latency times, and access times of
disk systems are measured in milliseconds (thousandths of a second). Thus,
the time required to retrieve information from a disk system can seem like
an eternity to an electronic circuit awaiting a result.

Magnetic storage technologies that are now less widely used include
magnetic tape, in which information is recorded on the magnetic coating of
a thin, plastic tape wound on reels, and floppy disk drives, in which single
platters with a magnetic coating are encased in a portable cartridge designed
to be readily removed from the drive. Magnetic tape drives have extremely
long seek times (thus, high latency), just as their cousins, audio and video
cassettes, suffer from long rewind and fast-forward times. Low cost and high
data capacities still make magnetic tape suitable for applications where
data is primarily read or written linearly, such as archival data backups. The
removable nature of floppy disk platters came at the cost of much lower data
densities and access speeds than hard disk platters, but their portability was
extremely valuable in earlier decades, prior to the arrival of flash drives with
larger capacity and higher durability.

1.3 Mass Storage

53

54

Chapter 1 Data Storage

\)) Essential Knowledge Statements

e The bandwidth of a system is a measure of bit rate —the amount of data (measured
in bits) that can be sent in a fixed amount of time.

e The latency of a system is the time elapsed between the transmission and the
receipt of a request.

Optical Systems

Another class of mass storage systems applies optical technology. An exam-
ple is the compact disk (CD). These disks are 12 centimeters (approximately
Sinches) in diameter and consist of reflective material covered with a clear
protective coating. Information is recorded on them by creating variations
in their reflective surfaces. This information can then be retrieved by means
of a laser that detects irregularities on the reflective surface of the CD as
it spins.

CD technology was originally applied to audio recordings using a record-
ing format known as CD-DA (compact disk-digital audio), and the CDs used
today for computer data storage use essentially the same format. In particular,
information on these CDs is stored on a single track that spirals around the
CD like a groove in an old-fashioned phonograph record, however, unlike
old-fashioned phonograph records, the track on a CD spirals from the inside
out (Figure 1.10). This track is divided into units called sectors, each with its
own identifying markings and a capacity of 2KB of data, which equates to
1/75 of a second of music in the case of audio recordings.

Note that the distance around the spiraled track is greater toward the
outer edge of the disk than at the inner portion. To maximize the capacity of
a CD,information is stored at a uniform linear density over the entire spiraled
track, which means that more information is stored in a loop around the outer

Data recorded on a single track,
consisting of individual sectors,
that spirals toward the outer edge

CD

Disk motion

Figure 1.10 CD storage format

portion of the spiral than in a loop around the inner portion. In turn, more
sectors will be read in a single revolution of the disk when the laser is scan-
ning the outer portion of the spiraled track than when the laser is scanning
the inner portion of the track. Thus, to obtain a uniform rate of data transfer,
CD-DA players are designed to vary the rotation speed depending on the
location of the laser. However, most CD systems used for computer data stor-
age spin at a faster, constant speed and thus must accommodate variations
in data transfer rates.

As a consequence of such design decisions, CD storage systems perform
best when dealing with long, continuous strings of data, as when reproducing
music. In contrast, when an application requires access to items of data in
a random manner, the approach used in magnetic disk storage (individual,
concentric tracks divided into individually accessible sectors) outperforms
the spiral approach used in CDs.

Traditional CDs have capacities in the range of 600 to 700MB. However,
DVDs (Digital Versatile Disks), which are constructed from multiple, semi-
transparent layers that serve as distinct surfaces when viewed by a precisely
focused laser, provide storage capacities of several GB. Such disks are capable
of storing lengthy multimedia presentations, including entire motion pictures.
Finally, Blu-ray technology, which uses a laser in the blue-violet spectrum of
light (instead of red), is able to focus its laser beam with very fine precision.
As a result, single-layer BDs (Blu-ray Disks) provide over five times the
capacity of a DVD. Newer multilayer BD formats can reach capacities in the
100GB range. This seemingly vast amount of storage is needed to meet the
demands of ultra-high definition video.

Flash Drives

A common property of mass storage systems based on magnetic or optic
technology is that physical motion, such as spinning disks, moving read/write
heads, and aiming laser beams, is required to store and retrieve data. This
means that data storage and retrieval is slow compared to the speed of elec-
tronic circuitry. Flash memory technology has the potential of alleviating this
drawback. In a flash memory system, bits are stored by sending electronic sig-
nals directly to the storage medium where they cause electrons to be trapped
in tiny chambers of silicon dioxide, thus altering the characteristics of small
electronic circuits. Since these chambers are able to hold their captive elec-
trons for many years without external power, this technology is excellent for
portable, non-volatile data storage.

Although data stored in flash memory systems can be accessed in small,
byte-size units as in RAM applications, current technology dictates that stored
data be erased in large blocks. Moreover, repeated erasing slowly damages the
silicon dioxide chambers, meaning that current flash memory technology is
not suitable for general main memory applications where its contents might

1.3 Mass Storage

55

56

Chapter 1 Data Storage

be altered many times a second. However, in those applications in which
alterations can be controlled to a reasonable level, such as in digital cameras
and smartphones, flash memory has become the mass storage technology of
choice. Indeed, since flash memory is not sensitive to physical shock (in con-
trast to magnetic and optic systems), it is now replacing other mass storage
technologies in portable applications such as laptop computers.

Flash memory devices called flash drives, with capacities of hundreds of
GBs, are available for general mass storage applications. These units are pack-
aged in ever smaller plastic cases with a removable cap on one end to protect
the unit’s electrical connector when the drive is off-line. The high capacity of
these portable units as well as the fact that they are easily connected to and
disconnected from a computer make them ideal for portable data storage.
However, the vulnerability of their tiny storage chambers dictates that they
are not as reliable as optical disks for truly long-term applications.

Larger flash memory devices called SSDs (solid-state drives) are explic-
itly designed to take the place of magnetic hard disks. SSDs compare favor-
ably to hard disks in their resilience to vibrations and physical shock, their
quiet operation (due to no moving parts), and their lower access times. SSDs
remain more expensive than hard disks of comparable size, and thus, are still
considered a high-end option when buying a desktop computer. For mobile
applications, such as laptops and smartphones, SSDs have the clear advantage.
SSD sectors suffer from the more limited lifetime of all flash memory tech-
nologies, but the use of wear-leveling techniques can reduce the impact of this
by relocating frequently altered data blocks to fresh locations on the drive.

Another application of flash technology is found in SD (Secure Digital)
memory cards (or just SD cards). These provide up to two GBs of storage
and are packaged in a plastic-rigged wafer about the size of a postage stamp.
(SD cards are also available in smaller mini and micro sizes.) SDHC (High
Capacity) memory cards can provide up to 32 GBs and the next generation
SDXC (Extended Capacity) memory cards can exceed a TB. Given their
compact physical size, these cards conveniently slip into slots of small
electronic devices. Thus, they are ideal for digital cameras, music players, car
navigation systems, and a host of other electronic appliances.

1.3 Questions & Exercises

1. What is gained by increasing the rotation speed of a disk or CD?

2. When recording data on a multiple-disk storage system, should
we fill a complete disk surface before starting on another
surface, or should we first fill an entire cylinder before starting
on another cylinder?

3. Why should the data in a reservation system that is constantly

being updated be stored on a magnetic disk instead of a CD or
DVD?

1.4 Representing Information as Bit Patterns

4. What factors allow CD, DVD, and Blu-ray disks all to be read by
the same drive?

5. What advantage do flash drives have over the other mass storage
systems introduced in this section?

6. What advantages continue to make magnetic hard disk drives
competitive?

- J

1.4 Representing Information as Bit Patterns

Having considered techniques for storing bits, we now consider how information
can be encoded as bit patterns. Our study focuses on popular methods for
encoding text, numerical data, images, and sound. Each of these systems has
repercussions that are often visible to a typical computer user. Our goal is to
understand enough about these techniques so that we can recognize their con-
sequences for what they are.

Representing Text

Information in the form of text is normally represented by means of a code
in which each of the different symbols in the text (such as the letters of the
alphabet and punctuation marks) is assigned a unique bit pattern. The text
is then represented as a long string of bits in which the successive patterns
represent the successive symbols in the original text.

In the 1940s and 1950s, many such codes were designed and used in con-
nection with different pieces of equipment, producing a corresponding prolif-
eration of communication problems. To alleviate this situation, the American
National Standards Institute (ANSI, pronounced “AN-see”) adopted the
American Standard Code for Information Interchange (ASCII, pronounced
“AS-kee”). This code uses bit patterns of length seven to represent the upper-
and lowercase letters of the English alphabet, punctuation symbols, the digits 0
through 9, and certain control information such as line feeds, carriage returns,
and tabs. ASCII is extended to an eight-bit-per-symbol format by adding a 0
at the most significant end of each of the seven-bit patterns. This technique
not only produces a code in which each pattern fits conveniently into a typical
byte-size memory cell but also provides 128 additional bit patterns (those
obtained by assigning the extra bit the value 1) that can be used to represent
symbols beyond the English alphabet and associated punctuation.

A portion of ASCII in its eight-bit-per-symbol format is shown in Appen-
dix A. By referring to this appendix, we can decode the bit pattern

01001000 01100101 01101100 01101100 01101111 00101110

as the message “Hello.” as demonstrated in Figure 1.11.

57

58

Chapter 1 Data Storage

01001000 01100101 01101100 01101100 01101111 00101110
H e | | 0

Figure 1.11 The message “Hello.” in ASCII or UTF-8 encoding

The International Organization for Standardization (also known as ISO,
in reference to the Greek word isos, meaning equal) has developed a num-
ber of extensions to ASCII, each of which were designed to accommodate
a major language group. For example, one standard provides the symbols
needed to express the text of most Western European languages. Included in
its 128 additional patterns are symbols for the British pound and the German
vowels 4, 0, and ii.

The ISO-extended ASCII standards made tremendous headway toward
supporting all of the world’s multilingual communication; however, two
major obstacles surfaced. First, the number of extra bit patterns available in
extended ASCII is simply insufficient to accommodate the alphabet of many
Asian and some Eastern European languages. Second, because a given doc-
ument was constrained to using symbols in just the one selected standard,
documents containing text of languages from disparate language groups
could not be supported. Both proved to be a significant detriment to inter-
national use. To address this deficiency, Unicode was developed through
the cooperation of several of the leading manufacturers of hardware and
software and has rapidly gained the support of the computing community.
This code uses a unique pattern of up to 21 bits to represent each symbol.
When the Unicode character set is combined with the Unicode Transforma-
tion Format 8-bit (UTF-8) encoding standard, the original ASCII charac-
ters can still be represented with 8 bits, while the thousands of additional
characters from such languages as Chinese, Japanese, and Hebrew can be
represented by 16 bits. Beyond the characters required for all of the world's
commonly-used languages, UTF-8 uses 24- or 32-bit patterns to represent
more obscure Unicode symbols, leaving ample room for future expansion.

A file consisting of a long sequence of symbols encoded using ASCII
or Unicode is often called a text file. It is important to distinguish between
simple text files that are manipulated by utility programs called text editors
(or often simply editors) and the more elaborate files produced by word pro-
cessors such as Microsoft’s Word. Both consist of textual material. However, a
text file contains only a character-by-character encoding of the text, whereas a
file produced by a word processor contains additional structure representing
changes in fonts, alignment information, etc.

Representing Numeric Values

Storing information in terms of encoded characters is inefficient when the
information being recorded is purely numeric. To see why, consider the prob-
lem of storing the value 25. If we insist on storing it as encoded symbols in

1.4 Representing Information as Bit Patterns 59

ASCII using one byte per symbol, we need a total of 16 bits. Moreover, the
largest number we could store using 16 bits is 99. However, as we will shortly
see, by using binary notation, we can store any integer in the range from 0
to 65535 in these 16 bits. Thus, binary notation (or variations of it) is used
extensively for encoded numeric data for computer storage.

Binary notation is a way of representing numeric values using only the
digits 0 and 1 rather than the digits 0, 1,2, 3,4, 5,6, 7,8, and 9 as in the tra-
ditional decimal, or base ten, system. We will study the binary system more
thoroughly in Section 1.5. For now, all we need is an elementary understand-
ing of the system. For this purpose, consider an old-fashioned car odometer
whose display wheels contain only the digits O and 1 rather than the tradi-
tional digits O through 9. The odometer starts with a reading of all Os, and as
the car is driven for the first few miles, the rightmost wheel rotates from a
0 to a 1. Then, as that 1 rotates back to a 0, it causes a 1 to appear to its left,
producing the pattern 10. The 0 on the right then rotates to a 1, producing
11. Now the rightmost wheel rotates from 1 back to 0, causing the 1 to its left
to rotate to a 0 as well. This in turn causes another 1 to appear in the third
column, producing the pattern 100. In short, as we drive the car, we see the
following sequence of odometer readings:

0000
0001
0010
0011
0100
0101
0110
0111
1000

The American National Standards Institute

The American National Standards Institute (ANSI) was founded in 1918 by a small consortium of
engineering societies and government agencies as a nonprofit federation to coordinate the develop-
ment of voluntary standards in the private sector. Today, ANSI membership includes more than 1300
businesses, professional organizations, trade associations, and government agencies. ANSI is head-
quartered in New York and represents the United States as a member body in the ISO. The website
for the American National Standards Institute is at http://www.ansi.org.

Similar organizations in other countries include Standards Australia (Australia), Standards Coun-
cil of Canada (Canada), China State Bureau of Quality and Technical Supervision (China), Deutsches
Institut fiir Normung (Germany), Japanese Industrial Standards Committee (Japan), Direccion Gen-
eral de Normas (Mexico), State Committee of the Russian Federation for Standardization and Metrol-
ogy (Russia), Swiss Association for Standardization (Switzerland), and British Standards Institution
(United Kingdom).

http://www.ansi.org/

60

Chapter 1 Data Storage

This sequence consists of the binary representations of the integers zero
through eight. Although tedious, we could extend this counting technique
to discover that the bit pattern consisting of sixteen 1s represents the value
65535, which confirms our claim that any integer in the range from 0 to 65535
can be encoded using 16 bits.

Due to this efficiency, it is common to store numeric information in a form
of binary notation rather than in encoded symbols. We say “a form of binary
notation” because the straightforward binary system just described is only
the basis for several numeric storage techniques used within machines. Some
of these variations of the binary system are discussed later in this chapter.
For now, we merely note that a system called two’s complement notation
(see Section 1.6) is common for storing whole numbers because it provides
a convenient method for representing negative numbers as well as positive.
For representing numbers with fractional parts such as 4-1/2 or 3/4, another
technique, called floating-point notation (see Section 1.7), is used.

Finally, whether we write a number using binary notation (base 2), the
more familiar decimal notation (base 10), or the shortcut hexadecimal notation
(base 16), the underlying numeric quantities represented remain the same.
That is, two plus two equals four, and that remains true whether we write it in
binary (010 + 010 = 100), decimal notation (2 + 2 = 4), hexadecimal
(0x2 + 0x2 = 0x4), or any other numeric base. To computers, it is all just
binary ones and zeros.

\/}A Essential Knowledge Statements

e Number bases, including binary, decimal, and hexadecimal, are used to represent
and investigate digital data.

e Numbers can be converted from any base to any other base.

Representing Images

One means of representing an image is to interpret the image as a collec-
tion of dots, each of which is called a pixel, short for “picture element.” The
appearance of each pixel is then encoded and the entire image is represented
as a collection of these encoded pixels. Such a collection is called a bit map.
This approach is popular because many display devices, such as printers and
display screens, operate on the pixel concept. In turn, images in bit map form
are easily formatted for display.

The method of encoding the pixels in a bit map varies among applications.
In the case of a simple black and white image, each pixel can be represented
by a single bit whose value depends on whether the corresponding pixel is
black or white. This is the approach used by most facsimile machines. For

1.4 Representing Information as Bit Patterns 61

more elaborate back and white photographs, each pixel can be represented
by a collection of bits (usually eight), which allows a variety of shades of gray-
ness to be represented. In the case of color images, each pixel is encoded by
more complex system. Two approaches are common. In one, which we will call
RGB encoding, each pixel is represented as three color components — a red
component, a green component, and a blue component — corresponding to
the three primary colors of light. One byte is normally used to represent the
intensity of each color component. In turn, three bytes of storage are required
to represent a single pixel in the original image.

An alternative to simple RGB encoding is to use a “brightness” compo-
nent and two color components. In this case, the “brightness” component,
which is called the pixel’s luminance, is essentially the sum of the red,
green, and blue components. (Actually, it is considered to be the amount
of white light in the pixel, but these details need not concern us here.) The
other two components, called the blue chrominance and the red chromi-
nance, are determined by computing the difference between the pixel’s
luminance and the amount of blue or red light, respectively, in the pixel.
Together, these three components contain the information required to
reproduce the pixel.

The popularity of encoding images using luminance and chrominance
components originated in the field of color television broadcast because this
approach provided a means of encoding color images that was also compatible
with older black-and-white television receivers. Indeed, a gray-scale version
of an image can be produced by using only the luminance components of the
encoded color image.

A disadvantage of representing images as bit maps is that an image cannot
be rescaled easily to any arbitrary size. Essentially, the only way to enlarge the
image is to make the pixels bigger, which leads to a grainy appearance. (This
is the technique called “digital zoom” used in digital cameras as opposed to
“optical zoom,” which is obtained by adjusting the camera lens.)

ISO — The International Organization for

Standardization

The International Organization for Standardization (more commonly called ISO) was established in
1947 as a worldwide federation of standardization bodies, one from each country. Today, it is head-
quartered in Geneva, Switzerland and has more than 100 member bodies as well as numerous cor-
respondent members. (A correspondent member is usually a standardization body from a country
that does not have a nationally recognized standardization body. Such members cannot participate
directly in the development of standards but are kept informed of ISO activities.) ISO maintains a
website at http://www.iso.org.

http://www.iso.org/

62

Chapter 1 Data Storage

An alternate way of representing images that avoids this scaling problem
is to describe the image as a collection of geometric structures, such as lines
and curves, that can be encoded using techniques of analytic geometry. Such
a description allows the device that ultimately displays the image to decide
how the geometric structures should be displayed rather than insisting that
the device reproduce a particular pixel pattern. This is the approach used
to produce the scalable fonts that are available via today’s word processing
systems. For example, TrueType (developed by Microsoft and Apple) is a
system for geometrically describing text symbols. Likewise, PostScript (devel-
oped by Adobe Systems) provides a means of describing characters as well
as more general pictorial data. This geometric means of representing images
is also popular in computer-aided design (CAD) systems in which drawings
of three-dimensional objects are displayed and manipulated on computer
display screens.

The distinction between representing an image in the form of geometric
structures as opposed to bit maps is evident to users of many drawing soft-
ware systems (such as Microsoft’s Paint utility) that allow the user to draw
pictures consisting of pre-established shapes such as rectangles, ovals, and
elementary curves. The user simply selects the desired geometric shape from
a menu and then directs the drawing of that shape via a mouse. During the
drawing process, the software maintains a geometric description of the shape
being drawn. As directions are given by the mouse, the internal geometric
representation is modified, reconverted to bit map form, and displayed. This
allows for easy scaling and shaping of the image. Once the drawing process
is complete, however, the underlying geometric description is discarded and
only the bit map is preserved, meaning that additional alterations require a
tedious pixel-by-pixel modification process. On the other hand, some drawing
systems preserve the description as geometric shapes, which can be modified
later. With these systems, the shapes can be easily resized, maintaining a crisp
display at any dimension.

Representing Sound

The most generic method of encoding audio information for computer
storage and manipulation is to sample the amplitude of the sound wave at
regular intervals and record the series of values obtained. For instance, the
series 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0 would represent a sound wave that
rises in amplitude, falls briefly, rises to a higher level, and then drops back
to 0 (Figure 1.12). This technique, using a sample rate of 8000 samples per
second, has been used for years in long-distance voice telephone commu-
nication. The voice at one end of the communication is encoded as numeric
values representing the amplitude of the voice every eight-thousandth of
a second. These numeric values are then transmitted over the communica-
tion line to the receiving end, where they are used to reproduce the sound
of the voice.

1.4 Representing Information as Bit Patterns

Encoded sound wave

0 1.5 2.0 1.5 2.0 3.0 4.0 3.0 0

Amplitudes

Figure 1.12 The sound wave represented by the sequence 0, 1.5,2.0, 1.5,2.0,3.0,4.0,3.0,0

Although 8000 samples per second may seem to be a rapid rate, it is
not sufficient for high-fidelity music recordings. To obtain the quality sound
reproduction obtained by musical CDs, a sample rate of 44,100 samples per
second is used. The data obtained from each sample are represented in 16 bits
(32 bits for stereo recordings). Consequently, each second of music recorded
in stereo requires more than a million bits.

An alternative encoding system known as Musical Instrument Digi-
tal Interface (MIDI, pronounced “MID-ee”) is widely used in the music
synthesizers found in electronic keyboards, for video game sound, and for
sound effects accompanying websites. By encoding directions for producing
music on a synthesizer rather than encoding the sound itself, MIDI avoids
the large storage requirements of the sampling technique. More precisely,
MIDI encodes what instrument is to play which note for what duration of
time, which means that a clarinet playing the note D for two seconds can be
encoded in three bytes rather than the over two million bits when sampled
at a rate of 44,100 samples per second.

In short, MIDI can be thought of as a way of encoding the sheet music
read by a performer rather than the performance itself, and in turn, a MIDI
“recording” can sound significantly different when performed on different
synthesizers.

1.4 Questions & Exercises

1. Here is a message encoded in ASCII using 8 bits per symbol.
What does it say? (See Appendix A.)

01000011 01101111 01101101 01110000 01110101 01110100
01100101 01110010 00100000 01010011 01100011 01101001
01100101 01101110 01100011 01100101

63

64

Chapter 1 Data Storage

10.

In the ASCII code, what is the relationship between the codes
for an uppercase letter and the same letter in lowercase? (See
Appendix A.)

Encode these sentences in ASCII:

a. “Stop!” Cheryl shouted.

b.Does2 + 3 = 5?

Describe a device from everyday life that can be in either of
two states, such as a flag on a flagpole that is either up or down.
Assign the symbol 1 to one of the states and 0 to the other,
and show how the ASCII representation for the letter b would
appear when stored with such bits.

Convert each of the following binary representations to its
equivalent base ten form:

a. 0101 b. 1001 c. 1011

d. 0110 €. 10000 f. 10010

Convert each of the following base ten representations to its
equivalent binary form:

a.6 b. 13 c. 11

d. 18 e.27 f.4

. What is the largest numeric value that could be represented with

three bytes if each digit were encoded using one ASCII pattern
per byte? What if binary notation were used?

An alternative to hexadecimal notation for representing bit
patterns is dotted decimal notation in which each byte in the
pattern is represented by its base ten equivalent. In turn, these
byte representations are separated by periods. For example, 12.5
represents the pattern 0000110000000101 (the byte 00001100
is represented by 12, and 00000101 is represented by 5), and the
pattern 100010000001000000000111 is represented by 136.16.7.
Represent each of the following bit patterns in dotted decimal
notation.

a.0000111100001111 b. 001100110000000010000000
€. 0000101010100000

. What is an advantage of representing images via geometric

structures as opposed to bit maps? What about bit map
techniques as opposed to geometric structures?

Suppose a stereo recording of one hour of music is encoded
using a sample rate of 44,100 samples per second, as discussed in
the text. How does the size of the encoded version compare to
the storage capacity of a CD?

1.5 The Binary System

1.5 The Binary System

In Section 1.4, we saw that binary notation is a means of representing numeric
values using only the digits 0 and 1 rather than the ten digits 0 through 9 that
are used in the more common base ten notational system. It is time now to
look at binary notation more thoroughly.

Binary Notation

Recall that in the base ten system, each position in a representation is
associated with a quantity. In the representation 375, the 5 is in the posi-
tion associated with the quantity one, the 7 is in the position associated with
ten, and the 3 is in the position associated with the quantity one hundred
(Figure 1.13a). Each quantity is ten times that of the quantity to its right.
The value represented by the entire expression is obtained by multiplying
the value of each digit by the quantity associated with that digit’s position
and then adding those products. To illustrate, the pattern 375 represents
(3 X hundred) + (7 X ten) + (5 X one), which, in more technical
notation,is 3 X 10%)+ (7 X 10+ (5 x 10%).

The position of each digit in binary notation is also associated with a
quantity, except that the quantity associated with each position is twice the
quantity associated with the position to its right. More precisely, the rightmost
digit in a binary representation is associated with the quantity one (2°), the
next position to the left is associated with two 1), the next is associated
with four (22), the next with eight (2°), and so on. For example, in the binary
representation 1011, the rightmost 1 is in the position associated with the
quantity one, the 1 next to it is in the position associated with two, the 0 is in
the position associated with four, and the leftmost 1 is in the position associ-
ated with eight (Figure 1.13b).

To extract the value represented by a binary representation, we follow
the same procedure as in base ten — we multiply the value of each digit by
the quantity associated with its position and add the results. For example, the
value represented by 100101 is 37 as shown in Figure 1.14. Note that since
binary notation uses only the digits 0 and 1, this multiply-and-add process
reduces merely to adding the quantities associated with the positions occu-
pied by 1s. Thus, the binary pattern 1011 represents the value eleven, because

a. Base 10 system b. Base two system
75]—Representation 10 1 1]—Representation
>/ &5 & SIS
§ s i|~Position'squantity G €S Position’s quantity
S
RS

Figure 1.13 The base ten and binary systems

65

Chapter 1 Data Storage

the 1s are found in the positions associated with the quantities one, two, and
eight.

In Section 1.4, we learned how to count in binary notation, which allowed
us to encode small integers. For finding binary representations of large values,
you may prefer the approach described by the algorithm in Figure 1.15. Let
us apply this algorithm to the value thirteen (Figure 1.16). We first divide
thirteen by two, obtaining a quotient of six and a remainder of one. Since
the quotient is not zero, Step 2 tells us to divide the quotient (six) by two,
obtaining a new quotient of three and a remainder of zero. The newest quo-
tient is still not zero, so we divide it by two, obtaining a quotient of one and
a remainder of one. Once again, we divide the newest quotient (one) by two,
this time obtaining a quotient of zero and a remainder of one. Since we have

Binary

pattern—[1 1 ?I x one = 1
0 x two = 0
1 x four = 4
0 x eight = 0
0 x sixteen = 0
1 x thirty-two = 32

o s ey 37 Total

Value Position’s
of bit quantity

Figure 1.14 Decoding the binary representation 100101

Step 1. Divide the value by two and record the remainder.

Step2. Aslong as the quotient obtained is not zero, continue to divide
the newest quotient by two and record the remainder.

Step3. Now that a quotient of zero has been obtained, the binary

representation of the original value consists of the remainders
listed from right to left in the order they were recorded.

Figure 1.15 An algorithm for finding the binary representation of a positive integer

0 Remainder 1 —

2J1

Remainder 1

N
aaw—»q_\—»

Remainder 0

6 Remainder 1
213

1 1 0 1 Binaryrepresentation

Figure 1.16 Applying the algorithm in Figure 1.15 to obtain the binary representation of
thirteen

1.5 The Binary System

now acquired a quotient of zero, we move on to Step 3, where we learn that
the binary representation of the original value (thirteen) is 1101, obtained
from the list of remainders.

Binary Addition

To understand the process of adding two integers that are represented in
binary, let us first recall the process of adding values that are represented in
traditional base ten notation. Consider, for example, the following problem:

58
+ 27

We begin by adding the 8 and the 7 in the rightmost column to obtain the
sum 15. We record the 5 at the bottom of that column and carry the 1 to the
next column, producing

1

58

+ 27
5

We now add the 5 and 2 in the next column along with the 1 that was car-
ried to obtain the sum 8, which we record at the bottom of the column. The
result is as follows:

58
+ 27
85

In short, the procedure is to progress from right to left as we add the
digits in each column, write the least significant digit of that sum under the
column, and carry the more significant digit of the sum (if there is one) to
the next column.

To add two integers represented in binary notation, we follow the same
procedure except that all sums are computed using the addition facts shown
in Figure 1.17 rather than the traditional base ten facts that you learned in
elementary school. For example, to solve the problem

111010
+ 11011

we begin by adding the rightmost 0 and 1; we obtain 1, which we write below
the column. Now we add the 1 and 1 from the next column, obtaining 10. We

+
oo
+
o -
+
- O
+
—_

ol
N
N
—
o

Figure 1.17 The binary addition facts

67

68

Chapter 1 Data Storage

write the 0 from this 10 under the column and carry the 1 to the top of the
next column. At this point, our solution looks like this:

1
111010
+ 11011
01

We add the 1, 0, and O in the next column, obtain 1, and write the 1 under
this column. The 1 and 1 from the next column total 10; we write the O under
the column and carry the 1 to the next column. Now our solution looks like
this:

1
111010
+ 11011
0101

The 1, 1,and 1 in the next column total 11 (binary notation for the value
three); we write the low-order 1 under the column and carry the other 1 to
the top of the next column. We add that 1 to the 1 already in that column to
obtain 10. Again, we record the low-order 0 and carry the 1 to the next col-
umn. We now have

1

111010
+ 11011

010101

The only entry in the next column is the 1 that we carried from the previ-
ous column, so we record it in the answer. Our final solution is this:

111010
+ 11011
1010101

Fractions in Binary

To extend binary notation to accommodate fractional values, we use a radix
point in the same role as the decimal point in decimal notation. That is, the
digits to the left of the point represent the integer part (whole part) of the
value and are interpreted as in the binary system discussed previously. The
digits to its right represent the fractional part of the value and are interpreted
in a manner similar to the other bits, except their positions are assigned frac-
tional quantities. That is, the first position to the right of the radix is assigned
the quantity % (which is 2~), the next position the quantity % (which is 2 ~2),
the next ' (which is 27 ?), and so on. Note that this is merely a continuation
of the rule stated previously: Each position is assigned a quantity twice the
size of the one to its right. With these quantities assigned to the bit positions,
decoding a binary representation containing a radix point requires the same

1.5 The Binary System 69

Analog Versus Digital

Prior to the twenty-first century, many researchers debated the pros and cons of digital versus analog
technology. In a digital system, a value is encoded as a series of digits and then stored using several
devices, each representing one of the digits. In an analog system, each value is stored in a single device
that can represent any value within a continuous range.

Let us compare the two approaches using buckets of water as the storage devices. To simulate a
digital system, we could agree to let an empty bucket represent the digit 0 and a full bucket represent
the digit 1. Then we could store a numeric value in a row of buckets using floating-point notation (see
Section 1.7). In contrast, we could simulate an analog system by partially filling a single bucket to
the point at which the water level represented the numeric value being represented. At first glance,
the analog system may appear to be more accurate since it would not suffer from the truncation
errors inherent in the digital system (again see Section 1.7). However, any movement of the bucket
in the analog system could cause errors in detecting the water level, whereas a significant amount of
sloshing would have to occur in the digital system before the distinction between a full bucket and
an empty bucket would be blurred. Thus, the digital system would be less sensitive to error than the
analog system. This robustness is a major reason why many applications that were originally based on
analog technology (such as telephone communication, audio recordings, and television) have shifted
to digital technology.

N\

procedure as used without a radix point. More precisely, we multiply each
bit value by the quantity assigned to that bit’s position in the representation.
To illustrate, the binary representation 101.101 decodes to 54, as shown in
Figure 1.18.

For addition, the techniques applied in the base ten system are also
applicable in binary. That is, to add two binary representations having radix
points, we merely align the radix points and apply the same addition process
as before. For example, 10.011 added to 100.11 produces 111.001, as shown
here:

10.011
+ 100.110
111.001

Binay 190 1.1 0 1

pattern 1 x one-eighth = 14
0 x one-fourth = 0
1 x one-half = 1p
1 x one = 1
0 x two = 0
1 x four = 4

o s e 5% Total

Value Position’s
of bit quantity

Figure 1.18 Decoding the binary representation 101.101

70 Chapter 1 Data Storage

1.5 Questions & Exercises

1. Convert each of the following binary representations to its
equivalent base ten form:
a.101010 b. 100001 c. 10111 d. 0110 e. 11111
2. Convert each of the following base ten representations to its
equivalent binary form:
a.32 b. 64 c. 96 d. 15 e.27
3. Convert each of the following binary representations to its
equivalent base ten form:

a.11.01 b. 101.111 c.10.1 d. 110.011 e.0.101
4. Express the following values in binary notation:
a. 4 b. 23/4 c. 14 d. /e e. 5%

5. Perform the following additions in binary notation:
a. 11011 b. 1010.001 ¢. 11111 d. 111.11
+1100 + 1.101 + 0001 + 00.01

1.6 Storing Integers

Mathematicians have long been interested in numeric notational systems, and
many of their ideas have turned out to be very compatible with the design of
digital circuitry. In this section, we consider two of these notational systems,
two’s complement notation and excess notation, which are used for represent-
ing integer values in computing equipment. These systems are based on the
binary system but have additional properties that make them more compat-
ible with computer design. With these advantages, however, come disadvan-
tages as well. Our goal is to understand these properties and how they affect
computer usage.

Two’s Complement Notation

The most popular system for representing integers within today’s comput-
ers is two’s complement notation. This system uses a fixed number of bits to
represent each of the values in the system. In today’s equipment, it is com-
mon to use a two’s complement system in which each value is represented
by a pattern of 32 bits. Such a large system allows a wide range of numbers
to be represented but is awkward for demonstration purposes. Thus, to study
the properties of two’s complement systems, we will concentrate on smaller
systems.

1.6 Storing Integers

a. Using patterns of length three b. Using patterns of length four
Bit Value Bit Value
pattern represented pattern represented

011 3 0111 7
010 2 0110 6
001 1 0101 5
000 0 0100 4
111 -1 0011 3
110 -2 0010 2
101 -3 0001 1
100 -4 0000 0
1111 -1
1110 -2
1101 -3
1100 -4
1011 -5
1010 -6
1001 -7
1000 -8

Figure 1.19 Two’s complement notation systems

Figure 1.19 shows two complete two’s complement systems—one based
on bit patterns of length three, the other based on bit patterns of length four.
Such a system is constructed by starting with a string of Os of the appropriate
length and then counting in binary until the pattern consisting of a single 0
followed by 1s is reached. These patterns represent the values 0,1,2,3, The
patterns representing negative values are obtained by starting with a string
of 1s of the appropriate length and then counting backward in binary until
the pattern consisting of a single 1 followed by Os is reached. These patterns
represent the values — 1, — 2, — 3, ... (If counting backward in binary is
difficult for you, merely start at the very bottom of the table with the pattern
consisting of a single 1 followed by 0s, and count up to the pattern consisting
of all 1s.)

Note that in a two’s complement system, the leftmost bit of a bit pattern
indicates the sign of the value represented. Thus, the leftmost bit is often
called the sign bit. In a two’s complement system, negative values are repre-
sented by the patterns whose sign bits are 1; nonnegative values are repre-
sented by patterns whose sign bits are 0.

In a two’s complement system, there is a convenient relationship between
the patterns representing positive and negative values of the same magnitude.
They are identical when read from right to left, up to and including the first 1.
From there on, the patterns are complements of one another. (The comple-
ment of a pattern is the pattern obtained by changing all the Os to 1s and all
the 1s to 0s;0110 and 1001 are complements.) For example, in the 4-bit system
in Figure 1.19, the patterns representing 2 and — 2 both end with 10, but the
pattern representing 2 begins with 00, whereas the pattern representing — 2

71

72

Chapter 1 Data Storage

Two's complement notation -
for 6 using four bits

Copy the bits from
; right to left until a

L—] 1 has been copied

Complement the
— | remaining bits
v

1 0

—_—— e — —

\

|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
v

Two’s complement notation

for —6 using four bits ——1

Figure 1.20 Encoding the value — 6 in two’s complement notation using 4 bits

o =

begins with 11. This observation leads to an algorithm for converting back
and forth between bit patterns representing positive and negative values of
the same magnitude. We merely copy the original pattern from right to left
until a 1 has been copied, then we complement the remaining bits as they are
transferred to the final bit pattern (Figure 1.20).

Understanding these basic properties of two’s complement systems also
leads to an algorithm for decoding two’s complement representations. If the
pattern to be decoded has a sign bit of 0, we need merely read the value as
though the pattern were a binary representation. For example, 0110 repre-
sents the value 6, because 110 is binary for 6. If the pattern to be decoded
has a sign bit of 1, we know the value represented is negative, and all that
remains is to find the magnitude of the value. We do this by applying the
“copy and complement” procedure in Figure 1.20 and then decoding the pat-
tern obtained as though it were a straightforward binary representation. For
example, to decode the pattern 1010, we first recognize that since the sign bit
is 1, the value represented is negative. Hence, we apply the “copy and comple-
ment” procedure to obtain the pattern 0110, recognize that this is the binary
representation for 6, and conclude that the original pattern represents — 6.

Addition in Two’s Complement Notation

To add values represented in two’s complement notation, we apply the same
algorithm that we used for binary addition, except that all bit patterns, includ-
ing the answer, are the same length. This means that when adding in a two’s
complement system, any extra bit generated on the left of the answer by a
final carry must be truncated. Thus, “adding” 0101 and 0010 produces 0111,
and “adding” 0111 and 1011 results in 0010 (0111 + 1011 = 10010,
which is truncated to 0010).

With this understanding, consider the three addition problems in Figure 1.21.
In each case, we have translated the problem into two’s complement notation
(using bit patterns of length four), performed the addition process previously
described, and decoded the result back into our usual base ten notation.

1.6 Storing Integers 73

Problem in Problem in Answer in
base 10 two's complement base 10
3 0011
+2 — + 0010

0101 — 5

3 1101
v o = +1110
1011 =——> -5

7 0111
5 —> +1011

0010 == 2

Figure 1.21 Addition problems converted to two’s complement notation

Observe that the third problem in Figure 1.21 involves the addition of a
positive number to a negative number, which demonstrates a major benefit of
two’s complement notation: Addition of any combination of signed numbers
can be accomplished using the same algorithm and thus the same circuitry.
This is in stark contrast to how humans traditionally perform arithmetic com-
putations. Whereas elementary school children are first taught to add and
later taught to subtract, a machine using two’s complement notation needs
to know only how to add.

For example, the subtraction problem 7 — 5 is the same as the addi-
tion problem 7 + (= 5). Consequently, if a machine were asked to sub-
tract 5 (stored as 0101) from 7 (stored as 0111), it would first change the
5 to — 5 (represented as 1011) and then perform the addition process of
0111 + 1011 to obtain 0010, which represents 2, as follows:

7 0111 0111
=5 — - 0101 — + 1011
0010 — 2

We see, then, that when two’s complement notation is used to represent
numeric values, a circuit for addition combined with a circuit for negating a
value is sufficient for solving both addition and subtraction problems. (Such
circuits are shown and explained in Appendix B.)

The Problem of Overflow

One problem we have avoided in the preceding examples is that in any two’s
complement system, there is a limit to the size of the values that can be rep-
resented. When using two’s complement with patterns of 4 bits, the largest
positive integer that can be represented is 7 and the most negative integer
is — 8. In particular, the value 9 can not be represented, which means that
we cannot hope to obtain the correct answer to the problem 5 + 4. In fact,
the result would appear as — 7. This phenomenon is called overflow. That s,

74

Chapter 1 Data Storage

overflow is the problem that occurs when a computation produces a value
that falls outside the range of values that can be represented. When using
two’s complement notation, this might occur when adding two positive val-
ues or when adding two negative values. In either case, the condition can be
detected by checking the sign bit of the answer. An overflow is indicated if
the addition of two positive values results in the pattern for a negative value
or if the sum of two negative values appears to be positive.

Of course, because most computers use two’s complement systems with
longer bit patterns than we have used in our examples, larger values can be
manipulated without causing an overflow. Today, it is common to use patterns
of 32 bits for storing values in two’s complement notation, allowing for posi-
tive values as large as 2,147483,647 to accumulate before overflow occurs. If
still larger values are needed, longer bit patterns can be used or perhaps the
units of measure can be changed. For instance, finding a solution in terms of
miles instead of inches results in smaller numbers being used and might still
provide the accuracy required.

The point is that computers can make mistakes. So, the person using the
machine must be aware of the dangers involved. One problem is that com-
puter programmers and users become complacent and ignore the fact that
small values can accumulate to produce large numbers. For example, in the
past it was common to use patterns of 16 bits for representing values in two’s
complement notation, which meant that overflow would occur when values
of 215 = 32,768 or larger were reached. On September 19,1989, a hospital
computer system malfunctioned after years of reliable service. Close inspec-
tion revealed that this date was 32,768 days after January 1, 1900, and the
machine was programmed to compute dates based on that starting date. Thus,
because of overflow, September 19, 1989, produced a negative value — a phe-
nomenon the computer’s program was not designed to handle.

\/}) Essential Knowledge Statements

¢ A finite representation is used to model the infinite mathematical concept of a
number.

e In many programming languages, the fixed number of bits used to represent
characters or integers limits the range of integer values and mathematical opera-
tions; this limitation can result in overflow or other errors.

® Integers may be constrained in the maximum and minimum values that can be
represented in a program because of storage limitations.

Excess Notation

Another method of representing integer values is excess notation. As is the
case with two’s complement notation, each of the values in an excess nota-
tion system is represented by a bit pattern of the same length. To establish

1.6 Storing Integers

an excess system, we first select the pattern length to be used, then write
down all the different bit patterns of that length in the order they would
appear if we were counting in binary. Next, we observe that the first pattern
with a 1 as its most significant bit appears approximately halfway through
the list. We pick this pattern to represent zero; the patterns following this
are used to represent 1, 2, 3, ...; and the patterns preceding it are used for
—1, =2, =3, ... The resulting code, when using patterns of length four,
is shown in Figure 1.22. There we see that the value 5 is represented by the
pattern 1101 and — 5 is represented by 0011. (Note that one difference
between an excess system and a two’s complement system is that the sign
bits are reversed.)

The system represented in Figure 1.22 is known as excess eight notation.
To understand why, first interpret each of the patterns in the code using the
traditional binary system and then compare these results to the values rep-
resented in the excess notation. In each case, you will find that the binary
interpretation exceeds the excess notation interpretation by the value 8. For
example, the pattern 1100 in binary notation represents the value 12, but in
our excess system it represents 4; 0000 in binary notation represents 0, but
in the excess system it represents negative 8. In a similar manner, an excess
system based on patterns of length five would be called excess 16 notation,
because the pattern 10000, for instance, would be used to represent zero
rather than representing its usual value of 16. Likewise, you may want to con-
firm that the three-bit excess system would be known as excess four notation
(Figure 1.23).

Bit Value
pattern represented
1111 7
1110 6
1101 5
1100 4
1011 8
1010 2
1001 1
1000 0
0111 -1
0110 -2
0101 -3
0100 -4
0011 -5
0010 -6
0001 -7
0000 -8

Figure 1.22 An excess eight conversion table

75

76 Chapter 1 Data Storage

Bit Value
pattern represented
111 3
110 2
101 1
100 0
011 -1
010 -2
001 -3
000 -4

Figure 1.23 An excess notation system using bit patterns of length three

1.6 Questions & Exercises

1. Convert each of the following two’s complement representations
to its equivalent base ten form:
a. 00011 b. 01111 c. 11100
d. 11010 e. 00000 f. 10000

2. Convert each of the following base ten representations to its
equivalent two’s complement form using patterns of 8 bits:
a.6 b.— 6 c.—17
d.13 e.— 1 f.0

3. Suppose the following bit patterns represent values stored
in two’s complement notation. Find the two’s complement
representation of the negative of each value:
a. 00000001 b. 01010101 ¢c. 11111100
d. 11111110 €. 00000000 f. 01111111

4. Suppose a machine stores numbers in two’s complement
notation. What are the largest and smallest numbers that can
be stored if the machine uses bit patterns of the following
lengths?
a. four b. six c. eight

5. In the following problems, each bit pattern represents a value
stored in two’s complement notation. Find the answer to each
problem in two’s complement notation by performing the
addition process described in the text. Then check your work
by translating the problem and your answer into base ten
notation.
a.0101 + 0010 b.0011 + 0001 ¢.0101 + 1010
d. 1110 + 0011 €. 1010 + 1110

1.7 Storing Fractions

6. Solve each of the following problems in two’s complement
notation, but this time, watch for overflow and indicate which
answers are incorrect because of this phenomenon.

a.0100 + 0011 b.0101 + 0110 ¢.1010 + 1010
d. 1010 + 0111 e. 0111 + 0001

7. Translate each of the following problems from base ten notation
into two’s complement notation using bit patterns of length four,
then convert each problem to an equivalent addition problem
(as a machine might do), and perform the addition. Check your
answers by converting them back to base ten notation.
a6 — (-1) b3 - (=2) ¢c4—-6
d.2 — (-4) el -35

8. Can overflow ever occur when values are added in two’s
complement notation with one value positive and the other
negative? Explain your answer.

9. Convert each of the following excess eight representations to
its equivalent base ten form without referring to the table in the

text:
a. 1110 b. 0111 ¢. 1000
d. 0010 e. 0000 f. 1001

10. Convert each of the following base ten representations to its
equivalent excess eight form without referring to the table in the

text:
a.5 b.—5 c.3
d.0 e.7 f.— 8

11. Can the value 9 be represented in excess eight notation? What
about representing 6 in excess four notation? Explain your
answer.

1.7 Storing Fractions

In contrast to the storage of integers, the storage of a value with a fractional
part requires that we store not only the pattern of Os and 1s representing
its binary representation but also the position of the radix point. A popular
way of doing this is based on scientific notation and is called floating-point
notation. The finite storage space in the computer limits the precision with
which we can represent fractions, a problem we will return to in the next
section.

77

78

Chapter 1 Data Storage

\)) Essential Knowledge Statements

e Real numbers are approximated by floating point representations that do not
necessarily have infinite precision.

Floating-Point Notation

Let us explain floating-point notation with an example using only one byte
of storage. Although machines normally use much longer patterns, this 8-bit
format is representative of actual systems and serves to demonstrate the
important concepts without the clutter of long bit patterns.

We first designate the high-order bit of the byte as the sign bit. Once
again, a 0 in the sign bit will mean that the value stored is nonnegative, and
a 1 will mean that the value is negative. Next, we divide the remaining 7 bits
of the byte into two groups, or fields: the exponent field and the mantissa
field. Let us designate the 3 bits following the sign bit as the exponent field
and the remaining 4 bits as the mantissa field. Figure 1.24 illustrates how the
byte is divided.

We can explain the meaning of the fields by considering the following
example. Suppose a byte consists of the bit pattern 01101011. Analyzing this
pattern with the preceding format, we see that the sign bit is 0, the exponent is
110, and the mantissa is 1011. To decode the byte, we first extract the mantissa
and place a radix point on its left side, obtaining

.1011

Next, we extract the contents of the exponent field (110) and interpret it as
an integer stored using the 3-bit excess method (see again Figure 1.24). Thus,
the pattern in the exponent field in our example represents a positive 2. This
tells us to move the radix in our solution to the right by 2 bits. (A negative
exponent would mean to move the radix to the left.) Consequently, we obtain

10.11

which is the binary representation for 2%. (Recall the representation of binary
fractions from Figure 1.18.) Next, we note that the sign bit in our example
is 0; the value represented is thus nonnegative. We conclude that the byte

]—Bit positions
I | | | |

Mantissa

Exponent
Sign bit

Figure 1.24 Floating-point notation components

1.7 Storing Fractions

01101011 represents 2%. Had the pattern been 11101011 (which is the same
as before except for the sign bit), the value represented would have been 2%.

As another example, consider the byte 00111100. We extract the mantissa
to obtain

.1100

and move the radix 1 bit to the left, since the exponent field (011) represents
the value — 1. We therefore have

.01100

which represents %. Since the sign bit in the original pattern is 0, the value
stored is nonnegative. We conclude that the pattern 00111100 represents .

To store a value using floating-point notation, we reverse the preceding
process. For example, to encode 14, first we express it in binary notation
and obtain 1.001. Next, we copy the bit pattern into the mantissa field from
left to right, starting with the leftmost 1 in the binary representation. At this
point, the byte looks like this:

We must now fill in the exponent field. To this end, we imagine the con-
tents of the mantissa field with a radix point at its left and determine the num-
ber of bits and the direction the radix must be moved to obtain the original
binary number. In our example, we see that the radix in .1001 must be moved
1 bit to the right to obtain 1.001. The exponent should therefore be a positive
one, so we place 101 (which is positive one in excess four notation as shown
in Figure 1.23) in the exponent field. Finally, we fill the sign bit with 0 because
the value being stored is nonnegative. The finished byte looks like this:

01011001

There is a subtle point you may have missed when filling in the mantissa
field. The rule is to copy the bit pattern appearing in the binary representa-
tion from left to right, starting with the leftmost 1. To clarify, consider the
process of storing the value %, which is .011 in binary notation. In this case,
the mantissa will be

This is because we fill in the mantissa field starting with the leftmost 1 that
appears in the binary representation. Representations that conform to this
rule are said to be in normalized form.

79

80 Chapter 1 Data Storage

Single Precision Floating Point

The floating-point notation introduced in this chapter (Section 1.7) is far too simplistic to be used in
an actual computer. After all, with just 8 bits, only 256 numbers out of the set of all real numbers can
be expressed. Our discussion has used 8 bits to keep the examples simple, yet still cover the important
underlying concepts.

Many of today’s computers support a 32 bit form of this notation called Single Precision Floating
Point. This format uses 1 bit for the sign, 8 bits for the exponent (in an excess notation), and 23 bits for
the mantissa. Thus, single precision floating point is capable of expressing very large numbers (order
of 103%) down to very small numbers (order of 10~ 37) with the precision of 7 decimal digits. That
is to say, the first 7 digits of a given decimal number can be stored with very good accuracy (a small
amount of error may still be present). Any digits past the first 7 will certainly be lost by truncation
error (although the magnitude of the number is retained).

Another form, called Double Precision Floating Point, uses 64 bits and provides a precision of
15 decimal digits.

Using normalized form eliminates the possibility of multiple representa-
tions for the same value. For example, both 00111100 and 01000110 would
decode to the value ¥, but only the first pattern is in normalized form. Com-
plying with normalized form also means that the representation for all non-
zero values will have a mantissa that starts with 1. The value zero, however, is
a special case; its floating-point representation is a bit pattern of all Os.

Truncation Errors

Let us consider the annoying problem that occurs if we try to store the value
2% with our one-byte floating-point system. We first write 2% in binary, which
gives us 10.101. But when we copy this into the mantissa field, we run out of
room, and the rightmost 1 (which represents the last %) is lost (Figure 1.25). If
we ignore this problem for now and continue by filling in the exponent field
and the sign bit, we end up with the bit pattern 01101010, which represents
2% instead of 2% . What has occurred is called a truncation error, or round-
off error — meaning that part of the value being stored is lost because the
mantissa field is not large enough.

\» Essential Knowledge Statements

* |n many programming languages, the fixed number of bits used to represent real
numbers (as floating point numbers) limits the range of floating point values and
mathematical operations; this limitation can result in round-off and other errors.

The significance of such errors can be reduced by using a longer mantissa
field. In fact, most computers manufactured today use at least 32 bits for

1.7 Storing Fractions 81

25/8 Original representation

10. 101 Basetwo representation

101 04 Raw bitpattern

|
| Lost bit
Mantissa

Exponent
Sign bit

Figure 1.25 Encoding the value 2%

storing values in floating-point notation instead of the 8 bits we have used
here. This also allows for a longer exponent field at the same time. Even with
these longer formats, however, there are still times when more accuracy is
required.

Another source of truncation errors is a phenomenon that we are already
accustomed to in base ten notation: the problem of nonterminating expan-
sions, such as those found when trying to express 5 in decimal form. Some
values cannot be accurately expressed regardless of how many digits we use.
The difference between our traditional base ten notation and binary notation
is that more values have nonterminating representations in binary than in
decimal notation. For example, the value one-tenth is nonterminating when
expressed in binary. Imagine the problems this might cause the unwary per-
son using floating-point notation to store and manipulate dollars and cents.
In particular, if the dollar is used as the unit of measure, the value of a dime
could not be stored accurately. A solution in this case is to manipulate the
data in units of pennies so that all values are integers that can be accurately
stored using a method such as two’s complement.

Truncation errors and their related problems are an everyday concern for
people working in the area of numerical analysis. This branch of mathematics
deals with the problems involved when doing actual computations that are
often massive and require significant accuracy.

The following is an example that would warm the heart of any numerical
analyst. Suppose we are asked to add the following three values using our
one-byte floating-point notation defined previously:

2 + 1k + 14

If we add the values in the order listed, we first add 2% to & and obtain
2%, which in binary is 10.101. Unfortunately, because this value cannot be
stored accurately (as seen previously), the result of our first step ends up

82

Chapter 1 Data Storage

being stored as 2% (which is the same as one of the values we were adding).
The next step is to add this result to the last . Here again a truncation error
occurs, and our final result turns out to be the incorrect answer, 2%.

Now let us add the values in the opposite order. We first add '4 to ' to
obtain %. In binary, this is .01; so the result of our first step is stored in a byte
as 00111000, which is accurate. We now add this % to the next value in the
list, 2%, and obtain 2%, which we can accurately store in a byte as 01101011.
The result this time is the correct answer.

To summarize, in adding numeric values represented in floating-point
notation, the order in which they are added can be important. The problem is
that if a very large number is added to a very small number, the small number
may be truncated. Thus, the general rule for adding multiple values is to add
the smaller values together first, in hopes that they will accumulate to a value
that is significant when added to the larger values. This was the phenomenon
experienced in the preceding example.

Designers of today’s commercial software packages do a good job of
shielding the uneducated user from problems such as this. In a typical spread-
sheet system, correct answers will be obtained unless the values being added
differ in size by a factor of 10! or more. Thus, if you found it necessary to
add one to the value

10,000,000,000,000,000

you might get the answer

10,000,000,000,000,000

rather than

10,000,000,000,000,001

Such problems are significant in applications (such as navigational systems)
in which minor errors can be compounded in additional computations and
ultimately produce significant consequences, but for the typical PC user, the
degree of accuracy offered by most commercial software is sufficient.

1.7 Questions & Exercises

1. Decode the following bit patterns using the floating-point

format discussed in the text:

a. 01001010 b.01101101 ¢. 00111001 d.11011100 e. 10101011
2. Encode the following values into the floating-point format

discussed in the text. Indicate the occurrence of truncation
EITorsS.

a.2% b. 5% c.% d. -3% e. —4%

1.8 Data and Programming

3. In terms of the floating-point format discussed in the text, which
of the patterns 01001001 and 00111101 represents the larger
value? Describe a simple procedure for determining which of
two patterns represents the larger value.

4. When using the floating-point format discussed in the text, what
is the largest value that can be represented? What is the smallest
positive value that can be represented?

- J

1.8 Data and Programming

While humans have devised the data representations and basic operations
that comprise modern computers, few people are very good at working with
computers directly at this level. People prefer to reason about computational
problems at a higher level of abstraction, and they rely on the computer to
handle the lowest levels of detail. A programming language is a computer sys-
tem created to allow humans to precisely express algorithms to the computer
using a higher level of abstraction.

In the 20" century, programming computers was considered to be the
province of a few highly-trained experts; to be sure, there remain many
problems in computing that require the attention of experienced computer
scientists and software engineers. However, in the 21 century, as computers
and computing have become increasingly intertwined in every aspect of our
modern lives, it has grown steadily more difficult to identify career fields
that do not require at least some degree of programming skill. Indeed, some
have identified programming or coding to be the next foundational pillar of
modern literacy, alongside reading, writing, and arithmetic.

In this section, and in programming supplement sections in subsequent
chapters, we look at how a programming language reflects the main ideas
of the chapter and allows humans to more easily solve problems involving
computation.

Getting Started with Python

Python is a programming language that was created by Guido van Rossum
in the late 1980s. Today it is one of the top ten most-used languages, and
remains popular in developing web applications, in scientific computation,
and as an introductory language for students. Organizations that use Python
range from Google to NASA, DropBox to Industrial Light & Magic, and
across the spectrum of casual, scientific, and artistic computer users. Python
emphasizes readability, and includes elements of the imperative, object-
oriented, and functional programming paradigms, which will be explored in
Chapter 6.

83

84

Chapter 1 Data Storage

The software for editing and running programs written in Python is
freely available from www.python.org, as are many other resources for get-
ting started. The Python language has evolved, and continues to evolve over
time. All of the examples in this book will use a version of the language called
“Python 37 Earlier versions of Python are capable of running very similar
programs, but there have been many minor changes, such as punctuation,
since Python 2.

Python is an interpreted language, which for beginners means that Python
instructions can be typed into an interactive prompt, or can be stored in a
plain text file (called a “script”) and run later. In the examples below, either
mode can be used, but exercise and chapter review problems will generally
ask for a Python script.

Hello, Python

By longstanding tradition, the first program described in many programming
language introductions is “Hello, World” This simple program outputs a nom-
inal greeting, demonstrating how a particular language produces a result, and
also how a language represents text. In Pythonl, we write this program as

print('Hello, World!")

Type this statement into Python's interactive interpreter, or save it as a Python
script and execute it. In either case, the result should be:

Hello, World!

Python parrots the text between the quotation marks back to the user.

There are several aspects to note even in this simple Python script. First,
print() is a built-in function, a pre-defined operation that Python scripts can
use to produce output, a result of the program that will be made visible to the
user. The print is followed by opening and closing parentheses; what comes
between those parentheses is the value to be printed.

Second, Python can denote strings of text using single quotation marks.
The quotation marks in front of the capital 'H' and after the exclamation
point denote the beginning and end of a string of characters that will be
treated as a value in Python.

Programming languages carry out their instructions very precisely. If a
user makes subtle changes to the message between the starting and finishing
quotation marks within the print statement, the resultant printed text will
change accordingly. Take a moment to try different capitalizations, punctua-
tion, and even different words within the print statement to see that this is so.

! This Python code is for version 3 of the language, which will be referred to only as “Python” for the
remainder of the book. Earlier versions of Python do not always require the opening and closing
parentheses.

http://www.python.org/

1.8 Data and Programming

Variables

Python allows the user to name values for later use, an important abstraction
when constructing compact, understandable scripts. These named storage loca-
tions are termed variables, analogous to the mathematical variables often seen in
algebra courses. Consider the slightly enhanced version of “Hello, World” below:

message = 'Hello, World!'
print(message)

In this script, the first line is an assignment statement. The use of the '=' can be
misleading to beginners, who are accustomed to the algebraic usage of the equal
sign. This assignment statement should be read, “Variable message is assigned
the string value 'Hello, World!'”In general, an assignment statement will
have a variable name on the left side of the equal sign and a value to the right.

Python is a dynamically typed language, which means that our script need
not establish ahead of time that there will be a variable called message, or
what type of value should be stored in message. In the script, it is sufficient to
state that our text string will be assigned to message, and then to refer to that
variable message in the subsequent print () statement.

The naming of variables is largely up to the user in Python. Python's
simple rules are that variable names must begin with an alphabet letter, and
may consist of an arbitrary number of letters, digits, and the underscore char-
acter, _. While a variable named m may be sufficient for a two line example
script, experienced programmers strive to give meaningful, descriptive vari-
able names in their scripts.

Python variable names are case-sensitive, meaning that capitalization mat-
ters. A variable named size is treated as distinct from variables named Size
or SIZE. A small number of keywords, names that are reserved for special
meaning in Python, cannot be used as variable names. You can view this list
by accessing the built-in Python help system.

help('keywords")

Variables can be used to store all of the types of values that Python is
able to represent.

my_integer = 5
my_floating_point = 26.2
my_Boolean = True
my_string = 'characters'

Observe that the types of values we see here correspond directly to the
representations covered earlier in this chapter: Boolean trues and falses
(Section 1.1), text (Section 1.4), integers (Section 1.6), and floating point
numbers (Section 1.7). With additional Python code (beyond the scope
of our simple introduction in this text), we could store image and sound
data (Section 1.4) with Python variables, as well.

85

86

Chapter 1 Data Storage

Python expresses hexadecimal values using a 0x prefix, as in

my_integer = OxFF
print(my_integer)

Specifying a value in hexadecimal does not alter the representation of that
value in the computer's memory, which stores integer values as a collection
of ones and zeros regardless of the numerical base used in the program-
mer’s reasoning. Hexadecimal notation remains a shortcut for humans, used
in situations in which that representation may aid in understanding the script.
The print () statement above thus prints, 255, the base ten interpretation of
hexadecimal 0xFF, because that is the default behavior for print (). More
complex adjustments to the print () statement can be used to output values
in other representations, but we confine our discussion here to the more
familiar base ten.

Unicode characters, including those beyond the ubiquitous ASCII subset,
can be included directly in strings when the text editor supports them,

print('31000") # Prints 1000, one thousand Indian Rupees

or can be specified using four hexadecimal digits following a ' \u" prefix.

print('\u00A31000") # Prints £1000, one thousand British
Pounds Sterling

The portion of the string '\u00A3' encodes the Unicode representation
of the British pound symbol. The 1000 follows immediately so that there
will be no space between the currency symbol and the amount in the final
output: £1000.

These example statements introduce another language feature, in addi-
tion to Unicode text strings. The # symbol denotes the beginning of a com-
ment, a human-readable notation to the Python code that will be ignored by
the computer when executed. Experienced programmers use comments in
their code to explain difficult segments of the algorithm, include history or
authorship information, or just to note where a human should pay attention
when reading the code. A high-level description at the top of a script intro-
duces a human reader to the overall purpose and methodology used in the
script. All of the characters to the right of the # until the end of the line are
ignored by Python.

\2») Essential Knowledge Statements

* An explanation of a program helps people understand the functionality and purpose
of it.

1.8 Data and Programming 87

Operators and Expressions

Python's built-in operators allow numeric values to be manipulated and com-
bined in a variety of familiar ways.

print(3 + 4) # Prints “7”, which is 3 plus 4.

print(5 - 6) # Prints “-1”, which is 5 minus 6

print(7 * 8) # Prints “56”, which is 7 times 8

print(45 / 4) # Prints “11.25”, which is 45 divided by 4
print(2 ** 10) # Prints “1024”, which is 2 to the 10" power

\)) Essential Knowledge Statements

¢ Integers and floating point numbers are used in programs without requiring
understanding of how they are implemented.

e Numbers and numerical concepts are fundamental to programming.

e Mathematical expressions using arithmetic operators are part of most programming
languages.

When an operation such as forty-five divided by four produces a non-integer
result, such as 11.25, Python implicitly switches to a floating-point represen-
tation. When purely integer answers are desired, a different set of operators
can be used.

print(
print(

45 || 4) # Prints “11”, which is 45 integer divided by 4

45 % 4) # Prints “1”, because 4 * 11 + 1 = 45

The double slash signifies the integer floor division operator, while the
percentage symbol signifies the modulus, or remainder operator. Taken
together, we can read these calculations as, “Four goes into forty-five
eleven times, with a remainder of one.” In the earlier example, we used **
to signify exponentiation, which can be somewhat surprising given that the
caret symbol, #,is often used for this purpose in typewritten text and even
some other programming languages. In Python, the caret operator belongs
to the group of bitwise Boolean operations, which will be discussed in the
next chapter.

String values also can be combined and manipulated in some intuitive ways.

\» Essential Knowledge Statements

e Strings and string operations, including concatenation and some form of substring,
are common in many programs.

88

Chapter 1 Data Storage

'"hello' + 'world'
t=s*4

(2]
1]

print(t) # Prints “helloworldhelloworldhelloworldhelloworld”

The plus operator concatenates string values, while the multiplication operator
replicates string values.

The multiple meanings of some of the built-in operators can lead to
confusion. This script will produce an error:

print('USD$' + 1000) # TypeError: Can't convert 'int' to
str implicitly

The error indicates that the string concatenation operator doesn't know what
to do when the second operand is not also a string. Fortunately, Python pro-
vides functions that allow values to be converted from one type of representa-
tion to another. The int () function will convert a floating-point value back to
an integer representation, discarding the fractional part. It will also convert
a string of text digits into an integer representation, provided that the string
correctly spells out a valid number. Likewise, the str () function can be used
to convert numeric representations into UTF-8 encoded text strings. Thus,
the following modification to the print () statement above corrects the error.

print('USD$' + str(1000)) # Prints “USD$1000”

Currency Conversion

The complete Python script example below demonstrates many of the con-
cepts introduced in this section. Given a set number of U.S. dollars, the script
produces monetary conversions to four other currencies.

A converter for international currency exchange.

USD_to_GBP = 0.76 # Today's rate, US dollars to British Pounds
USD_to_EUR = 0.86 # Today's rate, US dollars to Euros
USD_to_JPY = 114.08 # Today's rate, US dollars to Japanese Yen
USD_to_INR = 63.64 # Today's rate, US dollars to Indian Rupees
GBP_sign = '"\uOOA3' # Unicode values for non-ASCII currency
EUR_sign = '"\u20AC' # symbols.

JPY_sign = '"\uOO0A5'

INR_sign = '"\u20B9'

dollars = 1000 # The number of dollars to convert

pounds = dollars * USD_to_GBP # Conversion calculations

euros = dollars * USD_to_EUR

1.8 Data and Programming

yen = dollars * USD_to_JPY

rupees = dollars * USD_to_INR

print('Today, $' + str(dollars)) # Printing the results
print('converts to ' + GBP_sign + str(pounds))
print('converts to ' + EUR_sign + str(euros))

print('converts to ' + JPY_sign + str(yen))

print('converts to ' + INR_sign + str(rupees))

When executed, this script outputs the following:

Today, $1000

converts to £760.0
converts to €860.0
converts to ¥114080.0
converts to ¥63640.0

Debugging

Programming languages are not very forgiving for beginners, and a great deal
of time learning to write software can be spent trying to find bugs, or errors in
the code. Locating such bugs and correcting them is thus known as debugging.
There are three major classes of bug that we create in software: syntax errors
(mistakes in the symbols that have been typed), semantic errors (mistakes in
the meaning of the program), and runtime errors (mistakes that occur when
the program is executed.)

\/}) Essential Knowledge Statements

e | ocating and correcting errors in a program is called debugging the program.

Syntax errors are the most common for novices, and include simple errors
such as forgetting one of the quote marks at the beginning or ending of a text
string, failing to close open parentheses, or misspelling the function name
print (). The Python interpreter will generally try to point these errors out
when it encounters them, displaying an offending line number and a descrip-
tion of the problem. With some practice, a beginner can quickly learn to rec-
ognize and interpret common error cases. As examples:

print(5 +)
SyntaxError: invalid syntax

This expression is missing a value between the addition operator and the
closing parenthesis.

print(5.e)
SyntaxError: invalid token

89

90

Chapter 1 Data Storage

Python expects digits to follow the decimal point, not a letter.

pront (5)
NameError: name 'pront' is not defined

Like calling someone by the wrong name, misspelling the name of a known
function or variable can result in confusion and embarrassment.

Semantic errors are flaws in the algorithm, or flaws in the way the algo-
rithm is expressed in a language. Examples might include using the wrong
variable name in a calculation, or getting the order of arithmetic operations
wrong in a complex expression. Python follows the standard rules for opera-
tor precedence, so in an expression like total_pay = 40 + extra_hours *
pay_rate, the multiplication will be performed before the addition, incorrectly
calculating the total pay. (Unless your pay rate happens to be $1/hour.) Use
parenthesis to properly specify the order of operations in complex expres-
sions, thereby avoiding both semantic errors and code that may be harder to
understand (e.g., total_pay = (40 + extra_hours) * pay_rate).

Finally, runtime errors at this level might include unintentionally dividing
by zero or using a variable before you have defined it. Python reads state-
ments from top to bottom, and it must see an assignment statement to a vari-
able before that variable is used in an expression.

Testing is an integral part of writing Python scripts — or really any kind of
programs — effectively. Methodical testing of scripts requires first understand-
ing what the script is supposed to do. Run your script frequently as you write
it, perhaps as often as after you complete each line of code. Knowing what the
script ought to do allows syntax errors to be identified and fixed early, and
helps focus the author's attention on what should be happening at each step
of the script.

\)) Essential Knowledge Statements

e Knowledge of what a program is supposed to do is required in order to find most
program errors.

1.8 Questions & Exercises

1. What makes Python an interpreted programming language?
2. Write Python statements that print the following:

a. The words “Computer Science Rocks’; followed by an
exclamation point

b. The number 42
c. An approximation of the value of Pi to 4 decimal places

1.9 Data Compression

3. Write Python statements to make the following assignments to
variables:
a. The word “programmer” to a variable called, rockstar
b. The number of seconds in an hour to a variable called
seconds_per_hour
c. The average temperature of the human body to a variable
called bodyTemp
4. Write a Python statement that given an existing variable called
bodyTemp in degrees Fahrenheit stores the equivalent temperature
in degrees Celsius to a new variable called metricBodyTemp.

1.9 Data Compression

For the purpose of storing or transferring data, it is often helpful (and some-
times mandatory) to reduce the size of the data involved while retaining the
underlying information. The technique for accomplishing this is called data
compression. We begin this section by considering some generic data com-
pression methods and then look at some approaches designed for specific
applications.

Generic Data Compression Techniques

Data compression schemes fall into two categories. Some are lossless, oth-
ers are lossy. Lossless schemes are those that do not lose information in the
compression process. Lossy schemes are those that may lead to the loss of
information. Lossy techniques often provide more compression than lossless
ones and are therefore popular in settings in which minor errors can be toler-
ated, as in the case of images and audio.

\)) Essential Knowledge Statements

e There are trade offs in using lossy and lossless compression techniques for storing
and transmitting data.

In cases where the data being compressed consist of long sequences of
the same value, the compression technique called run-length encoding, which
is a lossless method, is popular. It is the process of replacing sequences of
identical data elements with a code indicating the element that is repeated
and the number of times it occurs in the sequence. For example, less space is
required to indicate that a bit pattern consists of 253 ones, followed by 118
zeros, followed by 87 ones than to actually list all 458 bits.

91

92

Chapter 1 Data Storage

Another lossless data compression technique is frequency-dependent
encoding, a system in which the length of the bit pattern used to represent a data
item is inversely related to the frequency of the item’s use. Such codes are exam-
ples of variable-length codes, meaning that items are represented by patterns of
different lengths. David Huffman is credited with discovering an algorithm that
is commonly used for developing frequency-dependent codes, and it is common
practice to refer to codes developed in this manner as Huffman codes. In turn,
most frequency-dependent codes in use today are Huffman codes.

As an example of frequency-dependent encoding, consider the task of
encoded English language text. In the English language, the letters e, t,a, and
1 are used more frequently than the letters z, q, and x. So, when constructing
a code for text in the English language, space can be saved by using short bit
patterns to represent the former letters and longer bit patterns to represent
the latter ones. The result would be a code in which English text would have
shorter representations than would be obtained with uniform-length codes.

In some cases, the stream of data to be compressed consists of units, each
of which differs only slightly from the preceding one. An example would be
consecutive frames of a motion picture. In these cases, techniques using rela-
tive encoding, also known as differential encoding, are helpful. These tech-
niques record the differences between consecutive data units rather than
entire units; that is, each unit is encoded in terms of its relationship to the
previous unit. Relative encoding can be implemented in either lossless or
lossy form depending on whether the differences between consecutive data
units are encoded precisely or approximated.

Still other popular compression systems are based on dictionary encoding
techniques. Here the term dictionary refers to a collection of building blocks
from which the message being compressed is constructed, and the message
itself is encoded as a sequence of references to the dictionary. We normally
think of dictionary encoding systems as lossless systems, but as we will see in
our discussion of image compression, there are times when the entries in the
dictionary are only approximations of the correct data elements, resulting in
a lossy compression system.

Dictionary encoding can be used by word processors to compress text
documents because the dictionaries already contained in these processors
for the purpose of spell checking make excellent compression dictionaries. In
particular, an entire word can be encoded as a single reference to this diction-
ary rather than as a sequence of individual characters encoded using a system
such as UTF-8. A typical dictionary in a word processor contains approxi-
mately 25,000 entries, which means an individual entry can be identified by
an integer in the range of 0 to 24,999. This means that a particular entry in the
dictionary can be identified by a pattern of only 15 bits. In contrast, if the word
being referenced consisted of six letters, its character-by-character encoding
would require 48 bits using UTF-8.

A variation of dictionary encoding is adaptive dictionary encoding (also
known as dynamic dictionary encoding). In an adaptive dictionary encod-
ing system, the dictionary is allowed to change during the encoding process.

1.9 Data Compression

A popular example is Lempel-Ziv-Welsh (LZW) encoding (named after its
creators, Abraham Lempel, Jacob Ziv, and Terry Welsh). To encode a mes-
sage using LZW, one starts with a dictionary containing the basic building
blocks from which the message is constructed, but as larger units are found in
the message, they are added to the dictionary — meaning that future occur-
rences of those units can be encoded as single, rather than multiple, dictionary
references. For example, when encoding English text, one could start with a
dictionary containing individual characters, digits, and punctuation marks. But
as words in the message are identified, they could be added to the dictionary.
Thus, the dictionary would grow as the message is encoded, and as the diction-
ary grows, more words (or recurring patterns of words) in the message could
be encoded as single references to the dictionary.

The result would be a message encoded in terms of a rather large dic-
tionary that is unique to that particular message. But this large dictionary
would not have to be present to decode the message. Only the original small
dictionary would be needed. Indeed, the decoding process could begin with
the same small dictionary with which the encoding process started. Then, as
the decoding process continues, it would encounter the same units found dur-
ing the encoding process, and thus, be able to add them to the dictionary for
future reference, just as in the encoding process.

To clarify, consider applying LZW encoding to the message
XYX XYyX XYX XYyX

starting with a dictionary with three entries, the first being x, the second being
v, and the third being a space. We would begin by encoding xyx as 121, mean-
ing that the message starts with the pattern consisting of the first dictionary
entry, followed by the second, followed by the first. Then the space is encoded
to produce 1213. But, having reached a space, we know that the preceding
string of characters forms a word, and so we add the pattern xyx to the dic-
tionary as the fourth entry. Continuing in this manner, the entire message
would be encoded as 121343434.

If we were now asked to decode this message, starting with the original
three-entry dictionary, we would begin by decoding the initial string 1213 as
xyx followed by a space. At this point, we would recognize that the string xyx
forms a word and add it to the dictionary as the fourth entry, just as we did
during the encoding process. We would then continue decoding the message
by recognizing that the 4 in the message refers to this new fourth entry and
decode it as the word xyx, producing the pattern

XyX XyX

Continuing in this manner, we would ultimately decode the string
121343434 as

XYX XYyX XyX XyX

which is the original message.

93

94 Chapter 1 Data Storage

\)) Essential Knowledge Statements

e |ossless data compression reduces the number of bits stored or transmitted but
allows complete reconstruction of the original data.

e | ossy data compression can significantly reduce the number of bits stored or
transmitted at the cost of being able to reconstruct only an approximation of the
original data.

Compressing Images

In Section 1.4, we saw how images are encoded using bit map techniques.
Unfortunately, the bit maps produced are often very large. In turn, numer-
ous compression schemes have been developed specifically for image
representations.

One system known as GIF (short for Graphic Interchange Format and
pronounced “Giff” by some and “Jiff” by others) is a dictionary encoding
system that was developed by CompuServe. It approaches the compression
problem by reducing the number of colors that can be assigned to a pixel to
only 256.The red-green-blue combination for each of these colors is encoded
using three bytes, and these 256 encodings are stored in a table (a dictionary)
called the palette. Each pixel in an image can then be represented by a single
byte whose value indicates which of the 256 palette entries represents the
pixel’s color. (Recall that a single byte can contain any one of 256 different
bit patterns.) Note that GIF is a lossy compression system when applied to
arbitrary images because the colors in the palette may not be identical to the
colors in the original image.

GIF can obtain additional compression by extending this simple diction-
ary system to an adaptive dictionary system using LZW techniques. In partic-
ular, as patterns of pixels are encountered during the encoding process, they
are added to the dictionary so that future occurrences of these patterns can
be encoded more efficiently. Thus, the final dictionary consists of the original
palette and a collection of pixel patterns.

One of the colors in a GIF palette is normally assigned the value “trans-
parent,” which means that the background is allowed to show through each
region assigned that “color.” This option, combined with the relative simplic-
ity of the GIF system, makes GIF a logical choice in simple animation appli-
cations in which multiple images must move around on a computer screen.
On the other hand, its ability to encode only 256 colors renders it unsuit-
able for applications in which higher precision is required, as in the field of
photography.

Another popular compression system for images is JPEG (pronounced
“JAY-peg”). It is a standard developed by the Joint Photographic Experts

1.9 Data Compression

Group (hence the standard’s name) within ISO. JPEG has proved to be an
effective standard for compressing color photographs and is widely used in
the photography industry, as witnessed by the fact that most digital cameras
use JPEG as their default compression technique.

The JPEG standard actually encompasses several methods of image com-
pression, each with its own goals. In those situations that require the utmost
in precision, JPEG provides a lossless mode. However, JPEG’s lossless mode
does not produce high levels of compression when compared to other JPEG
options. Moreover, other JPEG options have proven very successful, meaning
that JPEG’s lossless mode is rarely used. Instead, the option known as JPEG’s
baseline standard (also known as JPEG’s lossy sequential mode) has become
the standard of choice in many applications.

Image compression using the JPEG baseline standard requires a sequence
of steps, some of which are designed to take advantage of a human eye’s limi-
tations. In particular, the human eye is more sensitive to changes in brightness
than to changes in color. So, starting from an image that is encoded in terms
of luminance and chrominance components, the first step is to average the
chrominance values over two-by-two pixel squares. This reduces the size of
the chrominance information by a factor of four while preserving all the origi-
nal brightness information. The result is a significant degree of compression
without a noticeable loss of image quality.

The next step is to divide the image into eight-by-eight pixel blocks and
to compress the information in each block as a unit. This is done by applying
a mathematical technique known as the discrete cosine transform, whose
details need not concern us here. The important point is that this transfor-
mation converts the original eight-by-eight block into another block whose
entries reflect how the pixels in the original block relate to each other
rather than the actual pixel values. Within this new block, values below a
predetermined threshold are then replaced by zeros, reflecting the fact that
the changes represented by these values are too subtle to be detected by
the human eye. For example, if the original block contained a checkerboard
pattern, the new block might reflect a uniform average color. (A typical
eight-by-eight pixel block would represent a very small square within the
image so the human eye would not identify the checkerboard appearance
anyway.)

At this point, more traditional run-length encoding, relative encoding,
and variable-length encoding techniques are applied to obtain additional
compression. All together, JPEG’s baseline standard normally compresses
color images by a factor of at least 10, and often by as much as 30, without
noticeable loss of quality.

Still another data compression system associated with images is TIFF
(short for Tagged Image File Format). However, the most popular use of TIFF
is not as a means of data compression but instead as a standardized format
for storing photographs along with related information such as date, time,

95

96

Chapter 1 Data Storage

and camera settings. In this context, the image itself is normally stored as red,
green, and blue pixel components without compression.

The TIFF collection of standards does include data compression tech-
niques, most of which are designed for compressing images of text documents
in facsimile applications. These use variations of run-length encoding to take
advantage of the fact that text documents consist of long strings of white
pixels. The color image compression option included in the TIFF standards
is based on techniques similar to those used by GIF and are therefore not
widely used in the photography community.

Compressing Audio and Video

The most commonly used standards for encoding and compressing audio and
video were developed by the Motion Picture Experts Group (MPEG) under
the leadership of ISO. In turn, these standards themselves are called MPEG.

MPEG encompasses a variety of standards for different applications. For
example, the demands for high definition television (HDTV) broadcast are
distinct from those for video conferencing, in which the broadcast signal must
find its way over a variety of communication paths that may have limited
capabilities. Both of these applications differ from that of storing video in
such a manner that sections can be replayed or skipped over.

The techniques employed by MPEG are well beyond the scope of this text,
but in general, video compression techniques are based on video being con-
structed as a sequence of pictures in much the same way that motion pictures
are recorded on film. To compress such sequences, only some of the pictures,
called I-frames, are encoded in their entirety. The pictures between the I-frames
are encoded using relative encoding techniques. That is, rather than encode
the entire picture, only its distinctions from the prior image are recorded. The
I-frames themselves are usually compressed with techniques similar to JPEG.

The best known system for compressing audio is MP3, which was devel-
oped within the MPEG standards. In fact, the acronym MP3 is short for
MPEG layer 3. Among other compression techniques, MP3 takes advantage
of the properties of the human ear, removing those details that the human
ear cannot perceive. One such property, called temporal masking, is that for
a short period after a loud sound, the human ear cannot detect softer sounds
that would otherwise be audible. Another, called frequency masking, is that
a sound at one frequency tends to mask softer sounds at nearby frequen-
cies. By taking advantage of such characteristics, MP3 can be used to obtain
significant compression of audio while maintaining near-CD quality sound.

Using MPEG and MP3 compression techniques, video cameras are able
to record as much as an hour’s worth of video within 128MB of storage, and
portable music players can store as many as 400 popular songs in a single
GB. But, in contrast to the goals of compression in other settings, the goal
of compressing audio and video is not necessarily to save storage space. Just
as important is the goal of obtaining encodings that allow information to

1.10 Communication Errors

be transmitted over today’s communication systems fast enough to provide
timely presentation. If each video frame required a MB of storage and the
frames had to be transmitted over a communication path that could relay only
one KB per second, there would be no hope of successful video conferenc-
ing. Thus, in addition to the quality of reproduction allowed, audio and video
compression systems are often judged by the transmission speeds required for
timely data communication. These speeds are normally measured in bits per
second (bps). Common units include Kbps (kilo-bps, equal to one thousand
bps), Mbps (mega-bps, equal to one million bps), and Gbps (giga-bps, equal to
one billion bps). Using MPEG techniques, video presentations can be success-
fully relayed over communication paths that provide transfer rates of 40 Mbps.
MP3 recordings generally require transfer rates of no more than 64 Kbps.

1.9 Questions & Exercises

1. List four generic compression techniques.
2. What would be the encoded version of the message

XYX YXXXY XYX YXXXY YXXXY

if LZW compression, starting with the dictionary containing x, y,
and a space (as described in the text), were used?

3. Why would GIF be better than JPEG when encoding color
cartoons?

4. Suppose you were part of a team designing a spacecraft that will
travel to other planets and send back photographs. Would it be
a good idea to compress the photographs using GIF or JPEG’s
baseline standard to reduce the resources required to store and
transmit the images?

5. What characteristic of the human eye does JPEG’s baseline
standard exploit?
6. What characteristic of the human ear does MP3 exploit?

7. Identify a troubling phenomenon that is common when
encoding numeric information, images, and sound as bit patterns.

- J

1.10 Communication Errors

When information is transferred back and forth among the various parts of
a computer, or transmitted from the earth to the moon and back, or, for that
matter, merely left in storage, a chance exists that the bit pattern ultimately
retrieved may not be identical to the original one. Particles of dirt or grease
on a magnetic recording surface or a malfunctioning circuit may cause data

97

98

Chapter 1 Data Storage

to be incorrectly recorded or read. Static on a transmission path may corrupt
portions of the data. In the case of some technologies, normal background
radiation can alter patterns stored in a machine’s main memory.

To resolve such problems, a variety of encoding techniques have been
developed to allow the detection and even the correction of errors. Today,
because these techniques are largely built into the internal components of a
computer system, they are not apparent to the personnel using the machine.
Nonetheless, their presence is important and represents a significant contribu-
tion to scientific research. It is fitting, therefore, that we investigate some of
these techniques that lie behind the reliability of today’s equipment.

Parity Bits

A simple method of detecting errors is based on the principle that if each bit
pattern being manipulated has an odd number of 1s and a pattern with an
even number of 1s is encountered, an error must have occurred. To use this
principle, we need an encoding system in which each pattern contains an odd
number of 1s.This is easily obtained by first adding an additional bit, called a
parity bit, to each pattern in an encoding system already available (perhaps at
the high-order end). In each case, we assign the value 1 or 0 to this new bit so
that the entire resulting pattern has an odd number of 1s. Once our encoding
system has been modified in this way, a pattern with an even number of 1s
indicates that an error has occurred and that the pattern being manipulated
is incorrect.

Figure 1.26 demonstrates how parity bits could be added to the ASCII
codes for the letters A and F. Note that the code for A becomes 101000001
(parity bit 1) and the ASCII for F becomes 001000110 (parity bit 0). Although
the original 8-bit pattern for A has an even number of 1s and the original 8-bit
pattern for F has an odd number of 1s, both the 9-bit patterns have an odd
number of 1s. If this technique were applied to all the 8-bit ASCII patterns,
we would obtain a 9-bit encoding system in which an error would be indicated
by any 9-bit pattern with an even number of 1s.

The parity system just described is called odd parity, because we designed
our system so that each correct pattern contains an odd number of 1s. Another
technique is called even parity. In an even parity system, each pattern is

Parity bit ASCII A containing an even Parity bit ASCII F containing an odd
number of 1s number of 1s
| | | |
191999991| lQQlQQQllgl
[
Total pattern has an odd Total pattern has an odd
number of 1s number of 1s

Figure 1.26 The ASCII codes for the letters A and F adjusted for odd parity

1.10 Communication Errors

designed to contain an even number of 1s, and thus an error is signaled by
the occurrence of a pattern with an odd number of 1s.

Today it is not unusual to find parity bits being used in a computer’s main
memory. Although we envision these machines as having memory cells of
8-bit capacity, in reality, each has a capacity of 9 bits, 1 bit of which is used as
a parity bit. Each time an 8-bit pattern is given to the memory circuitry for
storage, the circuitry adds a parity bit and stores the resulting 9-bit pattern.
When the pattern is later retrieved, the circuitry checks the parity of the
9-bit pattern. If this does not indicate an error, then the memory removes the
parity bit and confidently returns the remaining 8-bit pattern. Otherwise, the
memory returns the 8 data bits with a warning that the pattern being returned
may not be the same pattern that was originally entrusted to memory.

The straightforward use of parity bits is simple, but it has its limitations.
If a pattern originally has an odd number of 1s and suffers two errors, it will
still have an odd number of 1s, and thus the parity system will not detect the
errors. In fact, straightforward applications of parity bits fail to detect any
even number of errors within a pattern.

One means of minimizing this problem is sometimes applied to long bit
patterns, such as the string of bits recorded in a sector on a magnetic disk. In
this case, the pattern is accompanied by a collection of parity bits making up a
checkbyte. Each bit within the checkbyte is a parity bit associated with a par-
ticular collection of bits scattered throughout the pattern. For instance, one
parity bit may be associated with every eighth bit in the pattern starting with
the first bit, while another may be associated with every eighth bit starting
with the second bit. In this manner, a collection of errors concentrated in one
area of the original pattern is more likely to be detected, since it will be in the
scope of several parity bits. Variations of this checkbyte concept lead to error
detection schemes known as checksums and cyclic redundancy checks (CRC).

Error-Correcting Codes

Although the use of a parity bit allows the detection of an error, it does
not provide the information needed to correct the error. Many people are
surprised that error-correcting codes can be designed so that errors can be
not only detected but also corrected. After all, intuition says that we cannot
correct errors in a received message unless we already know the information
in the message. However, a simple code with such a corrective property is
presented in Figure 1.27

To understand how this code works, we first define the term Hamming
distance, which is named after R. W. Hamming, who pioneered the search for
error-correcting codes after becoming frustrated with the lack of reliability of
the early relay machines of the 1940s. The Hamming distance between two bit
patterns is the number of bits in which the patterns differ. For example, the
Hamming distance between the patterns representing A and B in the code
in Figure 1.27 is four, and the Hamming distance between B and C is three.

99

100

Chapter 1 Data Storage

Symbol Code

000000
001111
010011
011100
100110
101001
110101
111010

ITOTMOOW>

Figure 1.27 An error-correcting code

The important feature of the code in Figure 1.27 is that any two patterns are
separated by a Hamming distance of at least three.

If a single bit is modified in a pattern from Figure 1.27 the error can be
detected since the result will not be a legal pattern. (We must change at least
3 bits in any pattern before it will look like another legal pattern.) Moreover,
we can also figure out what the original pattern was. After all, the modified
pattern will be a Hamming distance of only one from its original form but at
least two from any of the other legal patterns.

Thus, to decode a message that was originally encoded using Figure 1.27,
we simply compare each received pattern with the patterns in the code until
we find one that is within a distance of one from the received pattern. We con-
sider this to be the correct symbol for decoding. For example, if we received
the bit pattern 010100 and compared this pattern to the patterns in the code,
we would obtain the table in Figure 1.28. Thus, we would conclude that the
character transmitted must have been a D because this is the closest match.

You will observe that using this technique with the code in Figure 1.27
actually allows us to detect up to two errors per pattern and to correct one
error. If we designed the code so that each pattern was a Hamming distance
of at least five from each of the others, we would be able to detect up to four

Distance between

Pattern received pattern
Character Code received and code
A 000000 010100 2
B 001111 010100 4
© 010011 010100 3
D 011100 010100 1 Smallest
E 100110 010100 & distance
F 101001 010100 5
G 1710101 010100 2
H 1711010 010100 4

Figure 1.28 Decoding the pattern 010100 using the code in Figure 1.27

1.10 Communication Errors

errors per pattern and correct up to two. Of course, the design of efficient codes
associated with large Hamming distances is not a straightforward task. In fact, it
constitutes a part of the branch of mathematics called algebraic coding theory,
which is a subject within the fields of linear algebra and matrix theory.
Error-correcting techniques are used extensively to increase the reliability
of computing equipment. For example, they are often used in high-capacity
magnetic disk drives to reduce the possibility that flaws in the magnetic surface
will corrupt data. Moreover, a major distinction between the original CD for-
mat used for audio disks and the later format used for computer data storage is
in the degree of error correction involved. CD-DA format incorporates error-
correcting features that reduce the error rate to only one error for two CDs.
This is quite adequate for audio recordings, but a company using CDs to supply
software to customers would find that flaws in 50 percent of the disks would
be intolerable. Thus, additional error-correcting features are employed in CDs
used for data storage, reducing the probability of error to one in 20,000 disks.

1.10 Questions & Exercises

1. The following bytes were originally encoded using odd parity. In
which of them do you know that an error has occurred?

a. 100101101
b. 100000001
€. 000000000
d. 111000000
e. 011111111

2. Could errors have occurred in a byte from Question 1 without
your knowing it? Explain your answer.

3. How would your answers to Questions 1 and 2 change if you
were told that even parity had been used instead of odd?

4. Encode these sentences in ASCII using odd parity by adding a
parity bit at the high-order end of each character code:

a. "Stop!" Cheryl shouted.
b.Does2 + 3 = 5?

5. Using the error-correcting code presented in Figure 1.27 decode
the following messages:

a.001111 100100 001100
b. 010001 000000 001011
¢c. 011010 110110 100000 011100

6. Construct a code for the characters A, B, C, and D using bit
patterns of length five so that the Hamming distance between
any two patterns is at least three.

101

102 Chapter 1 Data Storage

.- cHAPTER REVIEW PROBLEMS [

. (Asterisked problems are associated with optional sections.)

1. Determine the output of each of the a 0 to 1, the output flips state (i.e., if it was
following circuits, assuming that the 0,itis now 1 and vice versa). However,
upper input is 1 and the lower input is when the flip input changes from 1 to a 0,
0. What would be the output when the nothing happens. Even though we may not

know the details of the circuitry needed
to accomplish this behavior, we could still
use this device as an abstract tool in other
% circuits. Consider the circuitry using two of
the following flip-flops. If a pulse were sent
a. on the circuit’s input, the bottom flip-flop
would change state. However, the second
N flip-flop would not change, since its input
(received from the output of the NOT gate)
b, went from a 1 to a 0. As a result, this circuit
would now produce the outputs 0 and 1. A
. H% second pulse would flip the state of both
flip-flops, producing an output of 1 and 0.
c. What would be the output after a third
pulse? After a fourth pulse?

upper input is 0 and the lower input is 1?

2. a. What Boolean operation does the circuit 0 0

. compute? Output
fli

= s

Input bc Flip-flop

\,:D“% Output

Input bc |

. fip | Fiflop 0
b. What Boolean operation does the circuit Input > 0
compute?

. b. It is often necessary to coordinate activities of

Input. >—————————— various components within a computer. This is

¢ . . S
L1 { Output accomplished by connecting a pulsating signal
o— 1

(called a clock) to circuitry similar to part a.
Additional gates (as shown) send signals in a

Input >— . : -
coordinated fashion to other connected circuits.
. On studying this circuit, you should be able to
* 3. a. If we were to purchase a flip-flop circuit confirm that on the 1%, 5" 9" | pulses of the
. from an electronic component store, we clock, a 1 will be sent on output A. On what
may find that it has an additional input pulses of the clock will a 1 be sent on output B?

called flip. When this input changes from On what pulses of the clock will a 1 be sent on

output C? On which output is a 1 sent on the 4™
pulse of the clock?

flip| > —> Output A
’—&o— Flip-flop
| Po —>0utput B
flip Flip-flop —> Output C
Clock >—

4. Assume that both of the inputs in the

following circuit are 1. Describe what
would happen if the upper input were
temporarily changed to 0. Describe
what would happen if the lower input
were temporarily changed to 0. Redraw
the circuit using NAND gates.

P>

>—

—P

. The following table represents

the addresses and contents (using
hexadecimal notation) of some cells in
a machine’s main memory. Starting with
this memory arrangement, follow the
sequence of instructions and record the
final contents of each of these memory
cells:

>

Address
0x00
0x01
0x02
0x03

Contents
0xAB
0x53
0xD6
0x02

Move the contents of the cell
whose address is 0x03 to the cell at
address 0x00.

Move the value 0x01 into the cell
at address 0x02.

Move the value stored at address
0x01 into the cell at address 0x03.

Step 1.

Step 2.

Step 3.

10.

11.

12.

103

Chapter Review Problems

. How many cells can be in a computer’s

main memory if each cell’s address can
be represented by two hexadecimal
digits? What if four hexadecimal digits
are used?

. What bit patterns are represented by

the following hexadecimal notations?

a. 0x8A9 b. 0xDCB c. OxEF3
d. 0xA01 e. 0xC99

. What is the value of the least significant

bit in the bit patterns represented by the
following hexadecimal notations?

a. 0x9A b. 0x90
c. 0x1B d. Ox6E

. Express the following bit patterns in

hexadecimal notation:

a. 10110100101101001011
b. 000111100001

c. 1111111011011011

Suppose a digital camera has a storage
capacity of 5S00MB. How many black-
and-white photographs could be stored
in the camera if each consisted of 512
pixels per row and 512 pixels per column
if each pixel required one bit of storage?

Suppose an image is represented on

a display screen by a square array
containing 256 columns and 256 rows
of pixels. If for each pixel, 3 bytes are
required to encode the color and 8 bits
to encode the intensity, how many byte-
size memory cells are required to hold
the entire picture?

a. What are the advantages, if any, of using
zoned-bit recording for disk storage
systems?

b. What is the difference between seek time
and access time?

. Suppose that you want to create a

backup of your entire data which is
around 10GB. Would it be reasonable to
use DVDs for the purpose of creating
this backup? What about BDs

(Blu-ray Disks)?

104

14.

15.

16.

17.

18.

19.

20.

21.

22.

Chapter 1 Data Storage

If each sector on a magnetic disk can store
512 bytes of data, how many sectors are
required to store two pages of integers,
where each page contains 10 lines, each
line contains 100 integers, and every
integer is represented by using four bytes?

How many bytes of storage space would
be required to store a 20-page document
containing details of employees, in
which each page contains 100 records
and every record is of 200 characters, if
two-byte Unicode characters were used?

In zoned-bit recording, why does the
rate of data transfer vary depending on
the portion of the disk being used?

What is the average access time for a
hard disk which has a rotation delay
of 10 milliseconds and a seek time of
9 milliseconds?

Suppose a disk storage system consists
of 5 platters with 10 tracks on each side
and 8 sectors in each track. What is the
capacity of the system? Assume every
sector contains 512 bytes and data can be
stored on both surfaces of each platter.

Here is a message in ASCII. What does
it say?

01000011 01101111 01101101 01110000
01110101 01110100 01100101 01110010

00100000 01010011 01100011 01101001
01100101 01101110 01100011 01100101

00100001

The following two messages are encoded
in ASCII using one byte per character
and then represented in hexadecimal
notation. Are both the messages same?

436F6D7075746572 436F6D7075736572
Encode the following sentences in
ASCII using one byte per character.

a. Is 1 byte = 8 bits?

b. Yes, a byte contains 8 bits!

Combine the two sentences of the
previous problem and express it in
hexadecimal notation.

23.

24.

25.

*26.

*27,

*28.

*30.

*31.

List the hexadecimal representations of
the integers from 20 to 27

a. Write the number 100 by representing 1
and 0 in ASCIL.
b. Write the number 255 in binary representation.

What values have binary representations
in which only one of the bits is 1? List
the binary representations for the
smallest six values with this property.

Convert each of the following
hexadecimal representations to
binary representation and then to its
equivalent base 10 representation:

a. OxA b. 0x14 c. Ox1E
d. 0x28 e. 0x32 f. 0x3C
g. 0x46 h. 0x65 i. OxCA
j. Ox12F k. 0x194 1. Ox1F9

Convert each of the following base 10
representations to its equivalent binary
representation:

a. 110 b. 99 c. 72
d. 81 e. 36
Convert each of the following excess 32

representations to its equivalent base 10
representation:

a. 011111
d. 000101

b. 100110
e. 010101

c. 111000

. Convert each of the following base 10

representations to its equivalent excess
sixteen representation:

a. —12 b. 0 c. 10
d. -8 e. 9
Convert each of the following two’s

complement representations to its
equivalent base 10 representation:

a. 010101 b. 101010 c. 110110
d. 011011 e. 111001
Convert each of the following base 10

representations to its equivalent two’s
complement representation in which
each value is represented in 8 bits:

a. =27 b. 3 c. 21
d. 8 e. —18

*32.

*33.

*34,

*35.

*36.

* 37,

*38.

Perform each of the following additions
assuming the bit strings represent
values in two’s complement notation.
Identify each case in which the answer
is incorrect because of overflow.

a. 00101 + 01000 b. 11111 + 00001
c. 01111 + 00001 d. 10111 + 11010
e. 11111+ 11111 f. 00111 + 01100

Solve each of the following problems
by translating the values into two’s
complement notation (using patterns

of 5 bits), converting any subtraction
problem to an equivalent addition
problem, and performing that addition.
Check your work by converting your
answer to base ten notation. (Watch out
for overflow.)

a. 5+ 1
d 8 — 7

b.5 -1
e. 12 + 5

c. 12 =5
.5 - 11

Convert each of the following binary
representations into its equivalent base
ten representation:

a. 11.11

c.0.1101
e. 10.01

b. 100.0101
d.1.0

Express each of the following values in
binary notation:

a. 5%
d. 1%

b. 15%s
e. 6%

Decode the following bit patterns using
the floating-point format described in
Figure 1.24:

a. 01011001
c. 10101100

c. 5%

b. 11001000
d. 00111001

Encode the following values using the
8-bit floating-point format described in
Figure 1.24. Indicate each case in which
a truncation error occurs.
a. 7% b. 15

d. 72 e. Wn

c. —3%

Assuming you are not restricted to
using normalized form, list all the bit
patterns that could be used to represent

*39.

*40),

*41.

*42,

*43,

*44,

105

Chapter Review Problems

the value 3% using the floating-point
format described in Figure 1.24.

What is the best approximation to the
square root of 2 that can be expressed
in the 8-bit floating-point format
described in Figure 1.24? What value is
actually obtained if this approximation
is squared by a machine using this
floating-point format?

What is the best approximation to the
value one-tenth that can be represented
using the 8-bit floating-point format
described in Figure 1.24?

Explain how errors can occur when
measurements using the metric system
are recorded in floating-point notation.
For example, what if 110 cm was
recorded in units of meters?

One of the bit patterns 01011 and 11011
represents a value stored in excess 16
notation and the other represents the
same value stored in two’s complement
notation.

a. What can be determined about this common
value?

b. What is the relationship between a pattern
representing a value stored in two’s comple-
ment notation and the pattern representing
the same value stored in excess notation
when both systems use the same bit pattern
length?

The three bit patterns 10000010,
01101000, and 00000010 are
representations of the same value in
two’s complement, excess, and the 8-bit
floating-point format presented in
Figure 1.24, but not necessarily in that
order. What is the common value, and
which pattern is in which notation?

Which of the following values cannot be
represented accurately in the floating-
point format introduced in Figure 1.24?

a. 6% b. 36
c. 9 d. /3
e. %

106

*485,

*46.

*47.

*48.

*49,

*50.

*51.

Chapter 1 Data Storage

If you changed the length of the

bit strings being used to represent
integers in binary from 4 bits to 6 bits,
what change would be made in the
value of the largest integer you could
represent? What if you were using two’s
complement notation?

What would be the hexadecimal
representation of the largest memory
address in a memory consisting of 4MB
if each cell had a one-byte capacity?

What would be the encoded version of
the message

XXY YYX XXy XXy YyX
if LZW compression, starting with the
dictionary containing X, y, and a space
(as described in Section 1.8), were used?

The following message was compressed
using LZW compression with a
dictionary whose first, second, and third
entries are X, y, and space, respectively.
What is the decompressed message?

22123113431213536

If the message

XXY YYX XXy XXYY
were compressed using LZW with a
starting dictionary whose first, second,
and third entries were X, y, and space,
respectively, what would be the entries
in the final dictionary?

As we will learn in the next chapter,
one means of transmitting bits over
traditional telephone systems is to
convert the bit patterns into sound,
transfer the sound over the telephone
lines, and then convert the sound back
into bit patterns. Such techniques are
limited to transfer rates of 57.6 Kbps.
Is this sufficient for teleconferencing
if the video is compressed using
MPEG?

Encode the following sentences in
ASCII using even parity by adding a

*52.

*53.

*54.

*585.

*56.

* 5T,

parity bit at the high-order end of each

character code:
a. Does100/5 = 207?
b. The total cost is $725.

The following message was originally
transmitted with odd parity in each
short bit string. In which strings have
errors definitely occurred?

11001 11011 10110 00000 11111 10001
10101 00100 01110

Suppose a 24-bit code is generated

by representing each symbol by

three consecutive copies of its ASCII
representation (for example, the symbol
A is represented by the bit string
010000010100000101000001). What
error-correcting properties does this
new code have?

Using the error-correcting code
described in Figure 1.28, decode the
following words:

111010 110110

101000 100110 001100
011101 000110 000000 010100

o o

110111 100110
e. 010011 000000 101001 100110

International currency exchange rates
change frequently. Investigate current
exchange rates, and update the currency
converter script from Section 1.8
accordingly.

Find another currency not already
included in the currency converter

from Section 1.8. Acquire its current
conversion rate, and find its Unicode
currency symbol on the web. Extend the
script to convert this new currency.

If your web browser and text editor
properly support Unicode and UTF-
8, copy/paste the actual international
currency symbols into the converter
script of Section 1.8, in place of the
cumbersome codes, like '\u00A3".

010010 001000 001110 101111 000000

*58.

*59.

(If your software has trouble handling
Unicode, you may get strange symbols in
your text editor when you try to do this.)

The currency converter script of Section
1.8 uses the variable dol11ars to store the
amount of money to be converted before
performing each of the multiplications.
This made the script one line longer than
simply typing the integer quantity 1000
directly into each of the multiplication
calculations. Why is it advantageous to
create this extra variable ahead of time?

Write and test a Python script that,
given a number of bytes, outputs

the equivalent number of kilobytes,
megabytes, gigabytes, and terabytes.
Write and test a complementary script

*60.

*61.

107

Social Issues

that, given a number of terabytes,
outputs the equivalent number of GB,
MB, KB, and bytes.

Write and test a Python script that,
given a number of minutes and seconds
for a recording, calculates the number
of bits used to encode uncompressed,
CD-quality stereo audio data of that
length. (Review Section 1.4 for the
necessary parameters and equations.)

Identify the error(s) in this Python script.
days_per_week = 7

weeks_per_year = 52

days_per_year = days_per_week **
weeks_per_year

PRINT (days_per_year)

SOCIAL ISSUES

The following questions are intended as a guide to the ethical/social/legal
issues associated with the field of computing. The goal is not merely to answer
these questions. You should also consider why you answered as you did and
whether your justifications are consistent from one question to the next.
1. A truncation error has occurred in a critical situation, causing
extensive damage and loss of life. Who is liable, if anyone? The
designer of the hardware? The designer of the software? The
programmer who actually wrote that part of the program? The person
who decided to use the software in that particular application? What
if the software had been corrected by the company that originally
developed it, but that update had not been purchased and applied in
the critical application? What if the software had been pirated?

2. Is it acceptable for an individual to ignore the possibility of
truncation errors and their consequences when developing his or her
own applications?

3. Was it ethical to develop software in the 1970s using only two digits
to represent the year (such as using 76 to represent the year 1976),
ignoring the fact that the software would be flawed as the turn of
the century approached? Is it ethical today to use only three digits
to represent the year (such as 982 for 1982 and 015 for 2015)? What
about using only four digits?

108 Chapter 1 Data Storage

4. Many argue that encoding information often dilutes or otherwise
distorts the information, since it essentially forces the information
. to be quantified. They argue that a questionnaire in which subjects
are required to record their opinions by responding within a scale
from one to five is inherently flawed. To what extent is information
. quantifiable? Can the pros and cons of different locations for a waste
disposal plant be quantified? Is the debate over nuclear power and
nuclear waste quantifiable? Is it dangerous to base decisions on
averages and other statistical analysis? Is it ethical for news agencies
to report polling results without including the exact wording of the
questions? Is it possible to quantify the value of a human life? Is
. it acceptable for a company to stop investing in the improvement
. of a product, even though additional investment could lower the
possibility of a fatality relating to the product’s use?

5. Should there be a distinction in the rights to collect and disseminate
data depending on the form of the data? That is, should the right to
collect and disseminate photographs, audio, or video be the same as

. the right to collect and disseminate text?

6. Whether intentional or not, a report submitted by a journalist usually
reflects that journalist’s bias. Often by changing only a few words, a
story can be given either a positive or negative connotation. (Compare
. “The majority of those surveyed opposed the referendum” to “A
significant portion of those surveyed supported the referendum.”)
Is there a difference between altering a story (by leaving out certain
points or carefully selecting words) and altering a photograph?

7. Suppose that the use of a data compression system results in the loss
of subtle but significant items of information. What liability issues
might be raised? How should they be resolved?

B soomonaLrerDinG [N

Drew, M. and Z. Li. Fundamentals of Multimedia,?nd ed. Cham, Switzerland:
Springer, 2014.

Halsall, F. Multimedia Communications. Boston, MA: Addison-Wesley, 2001.

Hamacher, V. C,,Z. G. Vranesic, S. G. Zaky, and N. Manjikian. Computer Orga-
nization and Embedded Systems, 6th ed. New York, NY: McGraw-Hill, 2011.

Knuth, D. E. The Art of Computer Programming, Vol. 2,3rd ed. Boston, MA:
Addison-Wesley, 1998.

Long, B. Complete Digital Photography, 8th ed. Boston, MA: Cengage
Learning, 2015.

Additional Reading ~ 109

Miano, J. Compressed Image File Formats. New York: ACM Press, 1999.

Petzold, C. CODE: The Hidden Language of Computer Hardware and Soft-
ware. Redman, WA: Microsoft Press, 2000.

Saloman, D., and G. Motta. Handbook of Data Compression,Sth ed. London,
England: Springer, 2010.

Sayood, K. Introduction to Data Compression, 5th ed. Cambridge, MA:
Morgan Kaufmann, 2017

Chapter

n this chapter, we will learn how a computer manipulates data and com-
municates with peripheral devices such as printers and keyboards. In
doing so, we will explore the basics of computer architecture and learn
how computers are programmed by means of encoded instructions, called

machine language instructions.

2.1 COMPUTER ARCHITECTURE

CPU Basics
The Stored-Program Concept

2.2 MACHINE LANGUAGE

The Instruction Repertoire
Vole: An Illustrative Machine
Language

2.3 PROGRAM EXECUTION

An Example of Program Execution
Programs Versus Data

*2.4 ARITHMETIC/LOGIC
Instructions
Logic Operations
Rotation and Shift Operations
Arithmetic Operations

*2.5 COMMUNICATING WITH OTHER
DEVICES

The Role of Controllers
Direct Memory Access

*2.6

Handshaking
Popular Communication Media
Communication Rates

PROGRAMMING DATA
MANIPULATION

Logic and Shift Operations
Control Structures

Input and Output

Marathon Training Assistant

*2.7 OTHER ARCHITECTURES

Pipelining
Multiprocessor Machines

* Asterisks indicate suggestions for optional
sections.

ENDURING UNDERSTANDINGS AND LEARNING OUTCOMES

A variety of abstractions built upon
binary sequences can be used to
represent all digital data.

LO. Describe the variety of abstractions
used to represent data.

LO. Explain how binary sequences are

used to represent digital data.

Multiple levels of abstraction are used
to write programs or create other
computational artifacts.

LO. Identify multiple levels of abstrac-

tions that are used when writing programs.

People write programs to execute
algorithms.
LO. Explain how programs implement

algorithms.

Programming is facilitated by appropriate
abstractions.

LO. Use abstraction to manage
complexity in programs.

112

Chapter 2 Data Manipulation

In Chapter 1, we studied topics relating to the storage of data inside a com-
puter. In this chapter, we will see how a computer manipulates that data. This
manipulation consists of moving data from one location to another as well
as performing operations such as arithmetic calculations, text editing, and
image manipulation. We begin by extending our understanding of computer
architecture beyond that of data storage systems.

2.1 Computer Architecture

The circuitry in a computer that controls the manipulation of data is called the
central processing unit, or CPU (often referred to as merely the processor). In
the machines of the mid-twentieth century, CPUs were large units comprised
of perhaps several racks of electronic circuitry that reflected the significance
of the unit. However, technology has shrunk these devices drastically. The
CPUs found in today’s desktop computers and notebooks are packaged as
small flat squares that would fit in the palm of one’s hand and whose con-
necting pins plug into a socket mounted on the machine’s main circuit board
(called the motherboard). In smartphones, tablets, and other mobile comput-
ing devices, CPU’s are around half the size of a postage stamp. Due to their
small size, these processors are called microprocessors.

CPU Basics

A CPU consists of three parts (Figure 2.1): the arithmetic/logic unit, which
contains the circuitry that performs operations on data (such as addition and
subtraction); the control unit, which contains the circuitry for coordinating
the machine’s activities; and the register unit, which contains data storage cells
(similar to main memory cells), called registers, that are used for temporary
storage of information within the CPU.

Some of the registers within the register unit are considered general-
purpose registers whereas others are special-purpose registers. We will discuss

Central processing unit Main memory
Registers

Arithmetic/logic L]
unit]
]

1 Bus
L]
Control 1
unit [1]

Figure 2.1 CPU and main memory connected via a bus

2.1 Computer Architecture

some of the special-purpose registers in Section 2.3. For now, we are con-
cerned only with the general-purpose registers.

General-purpose registers serve as temporary holding places for data
being manipulated by the CPU. These registers hold the inputs to the arith-
metic/logic unit’s circuitry and provide storage space for results produced by
that unit. To perform an operation on data stored in main memory, the con-
trol unit transfers the data from memory into the general-purpose registers,
informs the arithmetic/logic unit which registers hold the data, activates the
appropriate circuitry within the arithmetic/logic unit, and tells the arithmetic/
logic unit which register should receive the result.

For the purpose of transferring bit patterns, a machine’s CPU and main
memory are connected by a collection of wires or traces called a bus (see
again Figure 2.1). Through this bus, the CPU extracts (reads) data from main
memory by supplying the address of the pertinent memory cell along with an
electronic signal telling the memory circuitry that it is supposed to retrieve
the data in the indicated cell. In a similar manner, the CPU places (writes)
data in memory by providing the address of the destination cell and the data
to be stored together with the appropriate electronic signal telling main mem-
ory that it is supposed to store the data being sent to it.

Based on this design, the task of adding two values stored in main mem-
ory involves more than the mere execution of the addition operation. The
data must be transferred from main memory to registers within the CPU, the
values must be added with the result being placed in a register, and the result
must then be stored in a memory cell. The entire process is summarized by
the five steps listed in Figure 2.2.

The Stored-Program Concept

Early computers were not known for their flexibility—the steps that each
device executed were built into the control unit as a part of the machine. To
gain more flexibility, some of the early electronic computers were designed so

Step 1. Get one of the values to be
added from memory and
place itin a register.

Step 2. Get the other value to be
added from memory and
place itin another register.

Step 3. Activate the addition circuitry
with the registers used in
Steps 1 and 2 as inputs and
another register designated
to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.

Figure 2.2 Adding values stored in memory

113

114 Chapter 2 Data Manipulation

that the CPU could be conveniently rewired. This flexibility was accomplished
by means of a pegboard arrangement similar to old telephone switchboards
in which the ends of jumper wires were plugged into holes.

A breakthrough (credited, apparently incorrectly, to John von Neumann)
came with the realization that a program, just like data, can be encoded as a
sequence of bits and stored in main memory. If the control unit is designed
to extract the program from memory, decode the instructions, and execute
them, then the program that the machine follows can be changed merely
by changing the contents of the computer’s memory instead of rewiring
the CPU.

\» Essential Knowledge Statements

e A sequence of bits may represent instructions or data.

The idea of storing a computer’s program in its main memory is called
the stored-program concept and has become the standard approach used
today —so standard, in fact, that it seems obvious. What made it difficult origi-
nally was that everyone thought of programs and data as different entities:
Data were stored in memory; programs were part of the CPU. The result was
a prime example of not seeing the forest for the trees. It is easy to be caught
in such ruts, and the development of computer science might still be in many
of them today without our knowing it. Indeed, part of the excitement of the
science is that new insights are constantly opening doors to new theories and
applications.

Cache Memory

It is instructive to compare the memory facilities within a computer in relation to their functionality.
Registers are used to hold the data immediately applicable to the operation at hand; main memory is
used to hold data that will be needed in the near future; and mass storage is used to hold data that will
likely not be needed in the immediate future. Many machines are designed with an additional memory
level, called cache memory. Cache memory is a portion (perhaps several hundred KB) of high-speed
memory located within the CPU itself. In this special memory area, the machine attempts to keep
a copy of that portion of main memory that is of current interest. In this setting, data transfers that
normally would be made between registers and main memory are made between registers and cache
memory. Any changes made to cache memory are then transferred collectively to main memory at a
more opportune time. The result is a CPU that can execute its machine cycle more rapidly because it
is not delayed by main memory communication.

2.2 Machine Language

2.1 Questions & Exercises

1. What sequence of events do you think would be required to
move the contents of one memory cell in a computer to another
memory cell?

2. What information must the CPU supply to the main memory
circuitry to write a value into a memory cell?

3. Mass storage, main memory, and general-purpose registers are
all storage systems. What is the difference in their use?

2.2 Machine Language

To apply the stored-program concept, CPUs are designed to recognize instruc-
tions encoded as bit patterns. This collection of instructions along with the
encoding system is called the machine language. An instruction expressed
in this language is called a machine-level instruction or, more commonly, a
machine instruction.

The Instruction Repertoire

The list of machine instructions that a typical CPU must be able to decode
and execute is quite short. In fact, once a machine can perform certain ele-
mentary but well-chosen tasks, adding more features does not increase the
machine’s theoretical capabilities. In other words, beyond a certain point,
additional features may increase such things as convenience but add nothing
to the machine’s fundamental capabilities.

The degree to which machine designs should take advantage of this fact
has lead to two philosophies of CPU architecture. One is that a CPU should
be designed to execute a minimal set of machine instructions. This approach
leads to what is called a reduced instruction set computer (RISC). The argu-
ment in favor of RISC architecture is that such a machine is efficient, fast, and
less expensive to manufacture. On the other hand, others argue in favor of
CPUs with the ability to execute a large number of complex instructions, even
though many of them are technically redundant. The result of this approach is
known as a complex instruction set computer (CISC). The argument in favor
of CISC architecture is that the more complex CPU can better cope with the
ever-increasing complexities of today’s software. With CISC, programs can
exploit a powerful, rich set of instructions, many of which would require a
multi-instruction sequence in a RISC design.

In the 1990s and into the millennium, commercially available CISC
and RISC processors were actively competing for dominance in desktop

115

116 Chapter 2 Data Manipulation

Who Invented What?

Awarding a single individual credit for an invention is always a dubious undertaking. Thomas Edison
is credited with inventing the incandescent lamp, but other researchers were developing similar lamps,
and in a sense, Edison was lucky to be the one to obtain the patent. The Wright brothers are credited
with inventing the airplane, but they were competing with and benefited from the work of many con-
temporaries, all of whom were preempted to some degree by Leonardo da Vinci, who toyed with the
idea of flying machines in the fifteenth century. Even Leonardo’s designs were apparently based on
earlier ideas. Of course, in these cases, the designated inventor still has legitimate claims to the credit
bestowed. In other cases, history seems to have awarded credit inappropriately —an example is the
stored-program concept. Without a doubt, John von Neumann was a brilliant scientist who deserves
credit for numerous contributions. But one of the contributions for which popular history has chosen
to credit him, the stored-program concept, was apparently developed by researchers led by J. P. Eckert
at the Moore School of Electrical Engineering at the University of Pennsylvania. John von Neumann
was merely the first to publish work reporting the idea and thus computing lore has selected him as
the inventor.

computing. Intel processors, used in PCs, are examples of CISC architecture;
PowerPC processors (developed by an alliance between Apple, IBM, and
Motorola) are examples of RISC architecture and were used in the Apple
Macintosh. As time progressed, the manufacturing cost of CISC was drastically
reduced; thus Intel’s processors (or their equivalent from AMD — Advanced
Micro Devices, Inc.) are now found in virtually all desktop and laptop comput-
ers (even Apple is now building computers based on Intel products).

While CISC secured its place in desktop computers, it has an insatiable
thirst for electrical power. In contrast, the company Advanced RISC Machine
(ARM) has designed a RISC architecture specifically for low power con-
sumption. (Advanced RISC Machine was originally Acorn Computers and is
now ARM Holdings.) Thus, ARM-based processors, manufactured by a host
of vendors including Qualcomm and Texas Instruments, are readily found in
game controllers, digital TVs, navigation systems, automotive modules, smart-
phones, and other consumer electronics.

Regardless of the choice between RISC and CISC, a machine’s instruc-
tions can be categorized into three groupings: (1) the data transfer group, (2)
the arithmetic/logic group, and (3) the control group.

Data Transfer

The data transfer group consists of instructions that request the movement of
data from one location to another. Steps 1,2, and 4 in Figure 2.2 fall into this cat-
egory. We should note that using terms such as transfer or move to identify this
group of instructions is actually a misnomer. It is rare that the data being trans-
ferred is erased from its original location. The process involved in a transfer

2.2 Machine Language = 117

Variable-Length Instructions

To simplify explanations in the text, the machine language used for examples in this chapter (and
described in Appendix C) uses a fixed size (two bytes) for all instructions. Thus, to fetch an instruction,
the CPU always retrieves the contents of two consecutive memory cells and increments its program
counter by two. This consistency streamlines the task of fetching instructions and is characteristic of
RISC machines. CISC machines, however, have machine languages whose instructions vary in length.
Today’s Intel processors, for example, have instructions that range from single-byte instructions to
multiple-byte instructions whose length depends on the exact use of the instruction. CPUs with such
machine languages determine the length of the incoming instruction by the instruction’s op-code. That
is, the CPU first fetches the op-code of the instruction and then, based on the bit pattern received,
knows how many more bytes to fetch from memory to obtain the rest of the instruction.

N\

instruction is more like copying the data rather than moving it. Thus, terms
such as copy or clone better describe the actions of this group of instructions.

While on the subject of terminology, we should mention that special terms
are used when referring to the transfer of data between the CPU and main
memory. A request to fill a general-purpose register with the contents of
a memory cell is commonly referred to as a LOAD instruction; conversely, a
request to transfer the contents of a register to a memory cell is called a STORE
instruction. In Figure 2.2, Steps 1 and 2 are LOAD instructions, and Step 4 is a
STORE instruction.

An important group of instructions within the data transfer category con-
sists of the commands for communicating with devices outside the CPU-main
memory context (printers, keyboards, display screens, disk drives, etc.). Since
these instructions handle the input/output (I/O) activities of the machine,
they are called 1/0 instructions and are sometimes considered as a category
in their own right. On the other hand, Section 2.5 describes how these 1/0
activities can be handled by the same instructions that request data transfers
between the CPU and main memory. Thus, we shall consider the I/O instruc-
tions to be a part of the data transfer group.

Arithmetic/Logic

The arithmetic/logic group consists of the instructions that tell the control
unit to request an activity within the arithmetic/logic unit. Step 3 in Figure 2.2
falls into this group. As its name suggests, the arithmetic/logic unit is capa-
ble of performing operations other than the basic arithmetic operations.
Some of these additional operations are the Boolean operations AND, OR, and
XOR, introduced in Chapter 1, which we will discuss in more detail later in
this chapter.

Another collection of operations available within most arithmetic/logic
units allows the contents of registers to be moved to the right or the left

118

Chapter 2 Data Manipulation

within the register. These operations are known as either SHIFT or ROTATE
operations, depending on whether the bits that “fall off the end” of the regis-
ter are merely discarded (SHIFT) or are used to fill the holes left at the other
end (ROTATE).

Control

The control group consists of those instructions that direct the execution of
the program rather than the manipulation of data. Step 5 in Figure 2.2 falls
into this category, although it is an extremely elementary example. This group
contains many of the more interesting instructions in a machine’s repertoire,
such as the family of JUMP (or BRANCH) instructions used to direct the CPU to
execute an instruction other than the next one in the list. These JUMP instruc-
tions appear in two varieties: unconditional jumps and conditional jumps. An
example of the former would be the instruction “Skip to Step 5;” an example
of the latter would be, “If the value obtained is 0, then skip to Step 5.” The
distinction is that a conditional jump results in a “change of venue” only if a
certain condition is satisfied. As an example, the sequence of instructions in
Figure 2.3 represents an algorithm for dividing two values where Step 3 is a
conditional jump that protects against the possibility of division by zero.

Vole: An lllustrative Machine Language

Let us now consider how the instructions of a typical computer are encoded.
We shall call the machine that we will use for our discussion the Vole, as
described in Appendix C and summarized in Figure 2.4. This hypothetical
Vole processor has 16 general-purpose registers and 256 main memory cells,
each with a capacity of 8 bits. For referencing purposes, we label the registers
with the values 0 through 15 and address the memory cells with the values
0 through 255. For convenience, we think of these labels and addresses as

Step 1. LOAD a register with a value
from memory.

Step 2. LOAD another register with
another value from memory.

Step 3. If this second value is zero,
JUMP to Step 6.

Step 4. Divide the contents of the
first register by the second
register and leave the result
in a third register.

Step 5. STORE the contents of the
third register in memory.

Step 6. STOP.

Figure 2.3 Dividing values stored in memory

2.2 Machine Language = 119

Central processing unit Main memory

. Address Cells
Registers
[0x0 Program counter 0x00 []
B
1 ox1 us oxo1 [l
— ¢
[0x2 |) .

] nstruction register 0x03 [

OxF ’ :
— OxFF []

Figure 2.4 The architecture of the Vole, as described in Appendix C

values represented in base two and compress the resulting bit patterns using
hexadecimal notation. Thus, the registers are labeled 0x0 through OxF, and the
memory cells are addressed 0x00 through OxFF. (Recall from Chapter 1 that
we use “0x” as a prefix to denote hexadecimal values.)

The encoded version of a machine instruction consists of two parts: the
op-code (short for operation code) field and the operand field. The bit pat-
tern appearing in the op-code field indicates which of the elementary opera-
tions, such as STORE, SHIFT, XOR, and JUMP, is requested by the instruction. The
bit patterns found in the operand field provide more detailed information
about the operation specified by the op-code. For example, in the case of a
STORE operation, the information in the operand field indicates which reg-
ister contains the data to be stored and which memory cell is to receive the
data.

The entire machine language of our Vole machine (Appendix C) consists
of only twelve basic instructions. Each of these instructions is encoded using
a total of 16 bits, represented by four hexadecimal digits (Figure 2.5). The op-
code for each instruction consists of the first 4 bits or, equivalently, the first
hexadecimal digit. Note (Appendix C) that these op-codes are represented
by the digits 0x1 through 0xC. In particular, the table in Appendix C shows
us that an instruction beginning with 0x3 refers to a STORE instruction, and an
instruction beginning with OxA refers to a ROTATE instruction.

The operand field of each instruction on the Vole consists of three hexadeci-
mal digits (12 bits), and in each case (except for the HALT instruction, which needs

Op-code Operand
| |
| 1 |
0011 - 1010 0111 Actual bit pattern (16 bits)

0x3 0x5 0xA 0x7 Hexadecimal form (4 digits)

Figure 2.5 The composition of a Vole instruction

120

Chapter 2 Data Manipulation

|nstruction—|: 0x3 - O0xA 0x7

L\ N

Op-code 3 means

to store the contents This part of the operand identifies
of a registerin a the address of the memory cell
memory cell. that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Figure 2.6 Decoding the instruction 0x35A7

no further refinement) clarifies the general instruction given by the op-code. For
example (Figure 2.6), if the first digit of an instruction were 0x3 (the op-code for
storing the contents of a register), the next digit of the instruction would indi-
cate which register is to be stored, and the last two digits would indicate which
memory cell is to receive the data. Thus, the instruction 0x35A7 translates to the
statement “STORE the bit pattern found in register 5 in the memory cell whose
address is 0xA7” (Note how the use of hexadecimal notation simplifies our dis-
cussion. In reality, the instruction 0x35A7 is the bit pattern 0011010110100111.)

\/}A Essential Knowledge Statements

e Hexadecimal (base 16) is used to represent digital data because hexadecimal
representation uses fewer digits than binary.

(The instruction 0x35A7 also provides an explicit example of why main
memory capacities are measured in powers of two. Because 8 bits in the
instruction are reserved for specifying the memory cell utilized by this instruc-
tion, it is possible to reference exactly 2° different memory cells. It behooves
us, therefore, to build main memory with this many cells—addressed from
0 to 255. If main memory had more cells, we would not be able to write
instructions that distinguished between them; if main memory had fewer
cells, we would be able to write instructions that referenced nonexistent cells.)

As another example of how the operand field is used to clarify the general
instruction given by an op-code, consider an instruction with the op-code 0x7,
which requests that the contents of two registers be ORed. (We will see what it
means to OR two registers in Section 2.4. For now, we are interested merely in
how instructions are encoded.) In this case, the next digit indicates the register
in which the result should be placed, while the last two digits indicate which
two registers are to be ORed. Thus, the instruction 0x70C5 translates to the
statement “OR the contents of register C with the contents of register 5 and
leave the result in register 0.”

A subtle distinction exists between our machine’s two LOAD instructions.
Here we see that the op-code 0x1 identifies an instruction that loads a reg-
ister with the contents of a memory cell, whereas the op-code 0x2 identifies

2.2 Machine Language = 121

an instruction that loads a register with a particular value. The difference is
that the operand field in an instruction of the first type contains an address,
whereas in the second type, the operand field contains the actual bit pattern
to be loaded.

\)) Essential Knowledge Statements

e The interpretation of a binary sequence depends on how it is used.

Note that the Vole has two ADD instructions: one for adding two’s comple-
ment representations and one for adding floating-point representations. This
distinction is a consequence of the fact that adding bit patterns that represent
values encoded in two’s complement notation requires different activities
within the arithmetic/logic unit from adding values encoded in floating-point
notation. Registers and main memory cells make no distinctions between
the types of data they store; how a binary sequence is interpreted depends
entirely upon the operations applied to it. We close this section with Figure
2.7, which contains an encoded version of the instructions in Figure 2.2. We
have assumed that the values to be added are stored in two’s complement
notation at memory addresses 0x6C and 0x6D and the sum is to be placed in
the memory cell at address Ox6E.

\)) Essential Knowledge Statements

e A sequence of bits may represent different types of data in different contexts.

Encoded
instructions Translation
0x156C Load register 0x5 with the bit pattern
found in the memory cell at
address 0x6C.
0x166D Load register 0x6 with the bit pattern
found in the memory cell at
address 0x6D.
0x5056 Add the contents of register 0x5 and
0x6 as though they were two's
complement representation and
leave the result in register 0x0.
0x306E Store the contents of register 0x0
in the memory cell at address 0x6E.
0xC000 Halt.

Figure 2.7 An encoded version of the instructions in Figure 2.2

122

Chapter 2 Data Manipulation

2.2 Questions & Exercises

1. Why might the term move be considered an incorrect name for
the operation of moving data from one location in a machine to
another?

2. In the text, JUMP instructions were expressed by identifying the
destination explicitly by stating the name (or step number) of
the destination within the JUMP instruction (for example, “Jump
to Step 6”). A drawback of this technique is that if an instruction
name (number) is later changed, we must be sure to find all
jumps to that instruction and change that name also. Describe
another way of expressing a JUMP instruction so that the name of
the destination is not explicitly stated.

3. Is the instruction “If 0 equals 0, then jump to Step 7" a
conditional or unconditional jump? Explain your answer.

4. Write the example program in Figure 2.7 in actual bit patterns.

5. The following are instructions written in Vole machine language.
Rewrite them in English.

a. 0x368A b. 0OxBADE c. 0x803C d. 0x40F4

6. What is the difference between the instructions Ox1SAB and

0x25AB in Vole?

7. Here are some instructions in English. Translate each of them
into Vole machine language.

a. LOAD register number 0x3 with the hexadecimal value 0x56.
b. ROTATE register number 0x5 three bits to the right.

c. AND the contents of register 0OxA with the contents of register
0x5 and leave the result in register 0x0.

2.3 Program Execution

A computer follows a program stored in its memory by copying the instruc-
tions from memory into the CPU as needed. Once in the CPU, each instruc-
tion is decoded and obeyed. The order in which the instructions are fetched
from memory corresponds to the order in which the instructions are stored
in memory unless otherwise altered by a JUMP instruction.

To understand how the overall execution process takes place, it is nec-
essary to consider two of the special purpose registers within the CPU:
the instruction register and the program counter (see again Figure 2.4).
The instruction register is used to hold the instruction being executed. The

2.3 Program Execution

program counter contains the address of the next instruction to be executed,
thereby serving as the machine’s way of keeping track of where it is in the
program.

The CPU performs its job by continually repeating an algorithm that
guides it through a three-step process known as the machine cycle. The steps
in the machine cycle are fetch, decode, and execute (Figure 2.8). During the
fetch step, the CPU requests that main memory provide it with the instruc-
tion that is stored at the address indicated by the program counter. Since
each instruction in our machine is two bytes long, this fetch process involves
retrieving the contents of two memory cells from main memory. The CPU
places the instruction received from memory in its instruction register and
then increments the program counter by two so that the counter contains the
address of the next instruction stored in memory. Thus, the program counter
will be ready for the next fetch.

With the instruction now in the instruction register, the CPU decodes the
instruction, which involves breaking the operand field into its proper compo-
nents based on the instruction’s op-code.

The CPU then executes the instruction by activating the appropriate cir-
cuitry to perform the requested task. For example, if the instruction is a load
from memory, the CPU sends the appropriate signals to main memory, waits
for main memory to send the data, and then places the data in the requested
register; if the instruction is for an arithmetic operation, the CPU activates
the appropriate circuitry in the arithmetic/logic unit with the correct registers
as inputs and waits for the arithmetic/logic unit to compute the answer and
place it in the appropriate register.

1. Retrieve the next
instruction from
memory (as indicated
by the program
counter) and then
increment the -
program counter.

o"o
o% 2. Decode the bit pattern
in the instruction register.

3. Perform the action
required by the
instruction in the
instruction register.

Figure 2.8 The machine cycle

123

124 Chapter 2 Data Manipulation

Comparing Computer Power

When shopping for a personal computer, you will find that clock speeds are often used to compare
machines. A computer’s clock is a circuit, called an oscillator, which generates pulses that are used to
coordinate the machine’s activities—the faster this oscillating circuit generates pulses, the faster the
machine performs its machine cycle. Clock speeds are measured in hertz (abbreviated as Hz) with
one Hz equal to one cycle (or pulse) per second. Typical clock speeds in desktop computers are in the
range of a few hundred MHz (older models) to several GHz. (MHz is short for megahertz, which is a
million Hz. GHz is short for gigahertz, which is 1000 MHz.)

Unfortunately, different CPU designs might perform different amounts of work in one clock
cycle, and thus clock speed alone fails to be relevant in comparing machines with different CPUs. If
you are comparing a machine based on an Intel processor to one based on ARM, it would be more
meaningful to compare performance by means of benchmarking, which is the process of comparing
the performance of different machines when executing the same program, known as a benchmark. By
selecting benchmarks representing different types of applications, you get meaningful comparisons
for various market segments.

Once the instruction in the instruction register has been executed, the
CPU again begins the machine cycle with the fetch step. Observe that since
the program counter was incremented at the end of the previous fetch, it
again provides the CPU with the correct address.

A somewhat special case is the execution of a JUMP instruction. Consider,
for example, the instruction 0xB258 (Figure 2.9), which means “JUMP to the
instruction at address 0x58 if the contents of register 0x2 is the same as that
of register 0x0.” In this case, the execute step of the machine cycle begins with
the comparison of registers 0x2 and 0x0. If they contain different bit patterns,
the execute step terminates and the next machine cycle begins. If, however,
the contents of these registers are equal, the machine places the value 0x58 in
its program counter during the execute step. In this case, then, the next fetch

Instruction—[- - 0x5 0x8

Op-code B means to ;

change the value of This part of the operand is the
the program counter address to be placed in the
if the contents of the program counter.

indicated register is
the same as thatin
register 0.

This part of the operand identifies
the register to be compared to
register 0.

Figure 2.9 Decoding the instruction 0xB258

2.3 Program Execution

step finds 0x58 in the program counter, so the instruction at that address will
be the next instruction to be fetched and executed.

Note that if the instruction had been 0xB058, then the decision of whether
the program counter should be changed would depend on whether the con-
tents of register 0x0 was equal to that of register 0x0. But these are the same
registers and thus must have equal content. In turn, any instruction of the
form 0xBOXY will cause a jump to be executed to the memory location XY
regardless of the contents of register 0.

An Example of Program Execution

Let us follow the machine cycle applied to the program presented in Figure
2.7, which retrieves two values from main memory, computes their sum, and
stores that total in a main memory cell. We first need to put the program
somewhere in memory. For our example, suppose the program is stored in
consecutive addresses, starting at address 0xAQ. With the program stored in
this manner, we can cause the machine to execute it by placing the address
(0xAO0) of the first instruction in the program counter and starting the machine
(Figure 2.10).

The CPU begins the fetch step of the machine cycle by extracting the
instruction stored in main memory at location 0xA0 and placing this instruc-
tion (0x156C) in its instruction register (Figure 2.11a). Notice that, in our
machine, instructions are 16 bits (two bytes) long. Thus, the entire instruction

Program counter contains
address of first instructions.

CPU Main memory
Address Cells
Registers
0x0] Program counter 0xA0
0xA0 Bus OxA1
stored in
0x2 [0xA3 [0x6D)] main memory
. 0xA4 beginning at
address 0xA0.
0xAS
Instruction register 0xA6
OxA7 Ox6E
0xA8 0xCO
OxF [
0xA9 0x00| ||

Figure 2.10 The program from Figure 2.7 stored in main memory ready for
execution

125

126 Chapter 2 Data Manipulation

to be fetched occupies the memory cells at both address 0xA0O and OxA1. The
CPU is designed to take this into account, so it retrieves the contents of both
cells and places the bit patterns received in the instruction register, which is
16 bits long. The CPU then adds two to the program counter so that this reg-
ister contains the address of the next instruction (Figure 2.11b). At the end of
the fetch step of the first machine cycle, the program counter and instruction

register contain the following data:

Program Counter: O0xA2
Instruction Register: 0x156C

Next, the CPU analyzes the instruction in its instruction register and con-
cludes that it is to load register 0x5 with the contents of the memory cell at
address 0x6C. This load activity is performed during the execution step of the

machine cycle, and the CPU then begins the next cycle.

CPU Main memory
Program counter Adess Cells
0xAO0
0xAO
OxA1
Instruction register
0x156C 0xA2
0xA3
a. At the beginning of the fetch step, the instruction starting at address 0xAOQ is
retrieved from memory and placed in the instruction register.
CPU Main memory
Program counter Address Cells
0xA2
Bus 0xAO
— 0xA1
Instruction register
0x156C 0xA2
0xA3

b. Then the program counter is incremented so that it points to the next instruction.

Figure 2.11 Performing the fetch step of the machine cycle

2.3 Program Execution

This cycle begins by fetching the instruction 0x166D from the two memory
cells starting at address 0xA2.The CPU places this instruction in the instruc-
tion register and increments the program counter to 0OxA4. The values in the
program counter and instruction register therefore become the following:

Program Counter: 0xA4
Instruction Register: 0x166D

Now the CPU decodes the instruction 0x166D and determines that it is to
load register 0x6 with the contents of memory address 0x6D. It then executes
the instruction. It is at this time that register 0x6 is actually loaded.

Since the program counter now contains 0xA4, the CPU extracts the next
instruction starting at this address. The result is that 0x5056 is placed in the
instruction register, and the program counter is incremented to 0xA6. The
CPU now decodes the contents of its instruction register and executes it by
activating the two’s complement addition circuitry with inputs being registers
0x5 and 0x6.

During this execution step, the arithmetic/logic unit performs the
requested addition, leaves the result in register 0x0 (as requested by the con-
trol unit), and reports to the control unit that it has finished. The CPU then
begins another machine cycle. Once again, with the aid of the program coun-
ter, it fetches the next instruction (0x306E) from the two memory cells start-
ing at memory location 0xA6 and increments the program counter to 0xAS.
This instruction is then decoded and executed. At this point, the sum is placed
in memory location Ox6E.

The next instruction is fetched starting from memory location 0xAS8, and
the program counter is incremented to OxA A. The contents of the instruction
register (0xC000) are now decoded as the halt instruction. Consequently, the
machine stops during the execute step of the machine cycle, and the program
is completed.

In summary, we see that the execution of a program stored in memory
involves the same process you and I might use if we needed to follow a
detailed list of instructions. Whereas we might keep our place by marking
the instructions as we perform them, the CPU keeps its place by using the
program counter. After determining which instruction to execute next, we
would read the instruction and extract its meaning. Then, we would perform
the task requested and return to the list for the next instruction in the same
manner that the CPU executes the instruction in its instruction register and
then continues with another fetch.

Programs Versus Data

Many programs can be stored simultaneously in a computer’s main memory,
as long as they occupy different locations. Which program will be run when

127

128

Chapter 2 Data Manipulation

the machine is started can then be determined merely by setting the program
counter appropriately.

One must keep in mind, however, that because data are also contained
in main memory and encoded in terms of Os and 1s, the machine alone has
no way of knowing what is data and what is program. If the program counter
were assigned the address of data instead of the address of the desired pro-
gram, the CPU, not knowing any better, would extract the data bit patterns
as though they were instructions and execute them. The final result would
depend on the data involved.

We should not conclude, however, that providing programs and data
with a common appearance in a machine’s memory is bad. In fact, it has
proved a useful attribute because it allows one program to manipulate
other programs (or even itself) the same as it would data. Imagine, for
example, a program that modifies itself in response to its interaction with
its environment and thus exhibits the ability to learn, or perhaps a pro-
gram that writes and executes other programs in order to solve problems
presented to it.

2.3 Questions & Exercises

1. Suppose the Vole memory cells from addresses 0x00 to 0x05
contain the bit patterns given in the following table:

Address Contents

0x00 0x14
0x01 0x02
0x02 0x34
0x03 0x17
0x04 0xCO0
0x05 0x00

If we start the machine with its program counter containing
0x00, what bit pattern is in the memory cell whose address is
0x17 when the machine halts?

2. Suppose the Vole memory cells at addresses 0xB0 to 0xB8
contain the bit patterns given in the following table:

Address Contents

0xBO 0x13
0xB1 0xB8
0xB2 0xA3
0xB3 0x02
0xB4 0x33
0xB5 0xB8
0xB6 0xCO0
0xB7 0x00

0xB8 0xOF

a. If the program counter starts at 0xB0, what bit pattern is in
register number 0x3 after the first instruction has been executed?

b. What bit pattern is in memory cell 0xB8 when the halt
instruction is executed?

3. Suppose the Vole memory cells at addresses 0xA4 to 0xB1
contain the bit patterns given in the following table:

Address Contents

0xA4 0x20
0xAS5 0x00
0xA6 0x21
0xA7 0x03
0xAS8 0x22
0xA9 0x01
0xAA 0xB1
0xAB 0xBO
0xAC 0x50
0xAD 0x02
0xAE 0xBO
0xAF O0xAA
0xB0 0xCO0
0xB1 0x00

When answering the following questions, assume that the Vole is
started with its program counter containing OxA4.

a. What is in register 0x0 the first time the instruction at address
OxAA is executed?

b. What is in register 0x0 the second time the instruction at
address OxA A is executed?

c¢. How many times is the instruction at address OxA A executed
before the Vole halts?

4. Suppose the Vole memory cells at addresses 0xFO to 0xF9
contain the bit patterns described in the following table:

Address Contents

0xFO 0x20
0xF1 0xCO0
0xF2 0x30
0xF3 0xF8
0xF4 0x20
0xF5 0x00
0xF6 0x30
0xF7 0xF9
0xF8 0xFF
0xF9 0xFF

If we start the Vole with its program counter containing 0xFO0,
what does the machine do when it reaches the instruction at
address 0xF8?

2.3 Program Execution

129

130

Chapter 2 Data Manipulation

2.4 Arithmetic/Logic Instructions

As indicated earlier, the arithmetic/logic group of instructions consists of
instructions requesting arithmetic, logic, and shift operations. In this section,
we look at these operations more closely.

Logic Operations

We introduced the logic operations AND, OR, and XOR (exclusive or, often pro-
nounced, “ex-or”) in Chapter 1 as operations that combine two input bits
to produce a single output bit. These operations can be extended to bitwise
operations that combine two strings of bits to produce a single output string
by applying the basic operation to individual columns. For example, the result
of ANDing the patterns 10011010 and 11001001 results in

10011010
AND 11001001
10001000

where we have merely written the result of ANDing the 2 bits in each column
at the bottom of the column. Likewise, ORing and X0Ring these patterns would
produce

10011010 10011010
OR_11001001 XOR_11001001
11011011 01010011

One of the major uses of the AND operation is for placing Os in one part of a
bit pattern while not disturbing the other part. There are many applications
for this in practice, such as filtering certain colors out of a digital image rep-
resented in the RGB format, as described in the previous chapter. Consider,
for example, what happens if the byte 00001111 is the first operand of an AND
operation. Without knowing the contents of the second operand, we still can
conclude that the four most significant bits of the result will be 0s. Moreover,
the four least significant bits of the result will be a copy of that part of the
second operand, as shown in the following example:

00001111
AND 10101010
00001010

This use of the AND operation is an example of the process called mask-
ing. Here, one operand, called a mask, determines which part of the other
operand will affect the result. In the case of the AND operation, masking
produces a result that is a partial replica of one of the operands, with Os
occupying the nonduplicated positions. One trivial use of the AND operation
in this context would be to mask off all of the bits associated with the red

2.4 Arithmetic/Logic Instructions

component of the pixels in an image, leaving only the blue and green com-
ponents. This transformation is frequently available as an option in image
manipulation software.

AND operations are useful when manipulating other types of bit map
besides images, whenever a string of bits is used in which each bit represents
the presence or absence of a particular object. As a non-graphical example, a
string of 52 bits, in which each bit is associated with a particular playing card,
can be used to represent a poker hand by assigning 1s to those 5 bits associ-
ated with the cards in the hand and Os to all the others. Likewise, a bit map
of 52 bits, of which thirteen are 1s, can be used to represent a hand of bridge,
or a bit map of 32 bits can be used to represent which of thirty-two ice cream
flavors are available.

Suppose, then, that the 8 bits in a memory cell are being used as a bit map,
and we want to find out whether the object associated with the third bit from
the high-order end is present. We merely need to AND the entire byte with
the mask 00100000, which produces a byte of all Os if and only if the third
bit from the high-order end of the bit map is itself 0. A program can then act
accordingly by following the AND operation with a conditional branch instruc-
tion. Moreover, if the third bit from the high-order end of the bit mapisa 1,
and we want to change it to a 0 without disturbing the other bits, we can AND
the bit map with the mask 11011111 and then store the result in place of the
original bit map.

Where as the AND operation can be used to duplicate a part of a bit string
while placing Os in the nonduplicated part, the OR operation can be used to
duplicate a part of a string while putting 1s in the nonduplicated part. For this,
we again use a mask, but this time we indicate the bit positions to be dupli-
cated with Os and use 1s to indicate the nonduplicated positions. For example,
ORing any byte with 11110000 produces a result with 1s in its most significant
4 bits, while its remaining bits are a copy of the least significant 4 bits of the
other operand, as demonstrated by the following example:

11110000
OR 10101010
11111010

Consequently, whereas the mask 11011111 can be used with the AND opera-
tion to force a 0 in the third bit from the high-order end of a byte, the mask
00100000 can be used with the OR operation to force a 1 in that position.

A major use of the XOR operation is in forming the complement of a bit
string. XORing any byte with a mask of all 1s produces the complement of the
byte. For example, note the relationship between the second operand and the
result in the following example:

11111111
XOR_10101010
01010101

131

132

Chapter 2 Data Manipulation

The XOR operation can be used to invert all of the bits of an RGB bitmap
image, resulting in an “inverted”color image in which light colors have been
replaced by dark colors, and vice-versa.

In the Vole machine language (Appendix C), op-codes 0x7 0x8, and 0x9
are used for the logic operations OR, AND, and XOR, respectively. Each requests
that the corresponding logic operation be performed between the contents of
two designated registers and that the result be placed in another designated
register. For example, the instruction 0x7ABC requests that the result of ORing
the contents of registers 0xB and 0xC be placed in register OxA.

Rotation and Shift Operations

The operations in the class of rotation and shift operations provide a means
for moving bits within a register and are often used in solving alignment
problems. These operations are classified by the direction of motion (right or
left) and whether the process is circular. Within these classification guidelines
are numerous variations with mixed terminology. Let us take a quick look at
the ideas involved.

Consider a register containing a byte of bits. If we shift its contents 1 bit to
the right, we imagine the rightmost bit falling off the edge and a hole appear-
ing at the leftmost end. What happens with this extra bit and the hole is the
distinguishing feature among the various shift operations. One technique is
to place the bit that fell off the right end in the hole at the left end. The result
is a circular shift, also called a rotation. Thus, if we perform a right circular
shift on a byte-size bit pattern eight times, we obtain the same bit pattern we
started with.

Another technique is to discard the bit that falls off the edge and always
fill the hole with a 0. The term logical shift is often used to refer to these oper-
ations. Such shifts to the left can be used for multiplying two’s complement
representations by two. After all, shifting binary digits to the left corresponds
to multiplication by two, just as a similar shift of decimal digits corresponds
to multiplication by ten. Moreover, division by two can be accomplished by
shifting the binary string to the right. In either shift, care must be taken to
preserve the sign bit when using certain notational systems. Thus, we often
find right shifts that always fill the hole (which occurs at the sign bit position)
with its original value. Shifts that leave the sign bit unchanged are sometimes
called arithmetic shifts.

Among the variety of shift and rotate instructions possible, the Vole
machine language (Appendix C) contains only a right circular shift, desig-
nated by op-code OxA. In this case, the first hexadecimal digit in the operand
specifies the register to be rotated, and the rest of the operand specifies the
number of bits to be rotated. Thus, the instruction 0xA501 means “Rotate
the contents of register 0x5 to the right by 1 bit.” In particular, if register 0x5
originally contained the bit pattern 0x65, then it would contain 0xB2 after

2.4 Arithmetic/Logic Instructions

this instruction is executed (Figure 2.12). (You may wish to experiment with
how other shift and rotate instructions can be produced with combinations
of the instructions provided in Vole machine language. For example, since a
register is 8 bits long, a right circular shift of 3 bits produces the same result
as a left circular shift of 5 bits.)

Arithmetic Operations

Although we have already mentioned the arithmetic operations of add,
subtract, multiply, and divide, a few loose ends should still be connected.
First, we have already seen that subtraction can be simulated by means
of addition and negation. Moreover, multiplication is merely repeated
addition and division is repeated subtraction. (Six divided by two is three
because three two’s can be subtracted from six.) For this reason, some small
CPUs are designed with only the add or perhaps only the add and subtract
instructions.

We should also mention that numerous variations exist for each arithme-
tic operation. We have already alluded to this in relation to the add operations
available on the Vole. In the case of addition, for example, if the values to be
added are stored in two’s complement notation, the addition process must be
performed as a straightforward column-by-column addition. However, if the
operands are stored as floating-point values, the addition process must extract
the mantissa of each, shift them right or left according to the exponent fields,
check the sign bits, perform the addition, and translate the result into floating-
point notation. Thus, although both operations are considered addition, the
action of the machine is not the same.

o 1 1 0 0 1 0 1 The original bit pattern

The bits move one position
to the right. The rightmost
bit “falls off” the end and
is placed in the hole at the
other end.

1 0 1 1 0 0

Figure 2.12 Rotating the bit pattern 0x65 one bit to the right

1 0 The final bit pattern

133

134 Chapter 2 Data Manipulation

2.4 Questions & Exercises

10.

1. Perform the indicated operations.
a. 01001011 b. 100000011 C. 11111111
AND 10101011 AND 11101100 AND 00101101
d. 01001011 e. 10000011 f. 11111111
OR 10101011 OR 11101100 OR 00101101
g. 01001011 h. 100000011 i 11111111
XOR 10101011 XOR 11101100 XOR 00101101
2. Suppose you want to isolate the middle 4 bits of a byte by placing

Os in the other 4 bits without disturbing the middle 4 bits. What
mask must you use together with what operation?

Suppose you want to complement the 4 middle bits of a byte
while leaving the other 4 bits undisturbed. What mask must you
use together with what operation?

. a. Suppose you XOR the first 2 bits of a string of bits and then

continue down the string by successively XORing each result
with the next bit in the string. How is your result related to the
number of 1s appearing in the string?

b. How does this problem relate to determining what the
appropriate parity bit should be when encoding a message?

. It is often convenient to use a logical operation in place of a

numeric one. For example, the logical operation AND combines
2 bits in the same manner as multiplication. Which logical
operation is almost the same as adding 2 bits, and what goes
wrong in this case?

. What logical operation together with what mask can you use to

change ASCII codes of lowercase letters to uppercase? What
about uppercase to lowercase?

What is the result of performing a 3-bit right circular shift on the
following bit strings:

a. 01101010 b. 00001111 c. 01111111

What is the result of performing a 1-bit left circular shift on the
following bytes represented in hexadecimal notation? Give your
answer in hexadecimal form.

a. 0xAB b. 0x5C c. 0xB7 d. 0x35

A right circular shift of 3 bits on a string of 8 bits is equivalent to
a left circular shift of how many bits?

What bit pattern represents the sum of 01101010 and 11001100
if the patterns represent values stored in two’s complement
notation? What if the patterns represent values stored in the
floating-point format discussed in Chapter 1?

2.5 Communicating with Other Devices

11. Using Vole machine language (Appendix C), write a program that
places a 1 in the most significant bit of the memory cell whose
address is 0xA7 without modifying the remaining bits in the cell.

12. Write a Vole program that copies the middle 4 bits from memory
cell OxEOQ into the least significant 4 bits of memory cell 0OxE1, while
placing Os in the most significant 4 bits of the cell at location OxE1.

J

2.5 Communicating with Other Devices

Main memory and the CPU form the core of a computer. In this section, we
investigate how this core, which we will refer to as the computer, commu-
nicates with peripheral devices such as mass storage systems, printers, key-
boards, mice, display screens, digital cameras, and even other computers.

The Role of Controllers

Communication between a computer and other devices is normally handled
through an intermediary apparatus known as a controller. In the case of a
desktop computer, a controller may consist of circuitry permanently mounted
on the computer’s motherboard or, for flexibility, it may take the form of an
expansion board that plugs into a slot on the motherboard. In either case, the
controller connects via cables to peripheral devices within the computer case
or perhaps to a connector, called a port, on the back of the computer where
external devices can be attached. These controllers are sometimes small com-
puters themselves, each with its own memory circuitry and simple CPU that
performs a program directing the activities of the controller.

A controller translates messages and data back and forth between forms
compatible with the internal characteristics of the computer and those of
the peripheral device to which it is attached. Originally, each controller was
designed for a particular type of device; thus, purchasing a new peripheral
device often required the purchase of a new controller as well. As comput-
ers became more prevalent, and the number of available peripherals greatly
increased, communication standards arose to allow a single controller to
handle many kinds of devices. Successively faster versions of the univer-
sal serial bus (USB), the high definition multimedia interface (HDMI) and
DisplayPort are all examples of widely adopted standards for connecting
peripheral devices to computers. A single USB controller can be used as the
interface between a computer and any collection of USB-compatible devices
(theoretically, as many as 127 devices at once, or 2’—1). The list of devices
on the market today that can communicate with a USB controller includes
mice, printers, scanners, external disks and flash drives, digital cameras, audio
speakers, smart watches and smartphones, and many others.

135

136

Chapter 2 Data Manipulation

Each controller communicates with the computer itself by means of con-
nections to the same bus that connects the computer’s CPU and main mem-
ory (Figure 2.13). From this position, it is able to monitor the signals being
sent between the CPU and main memory as well as to inject its own signals
onto the bus.

With this arrangement, the CPU is able to communicate with the con-
trollers attached to the bus in the same manner that it communicates with
main memory. To send a bit pattern to a controller, the bit pattern is first
constructed in one of the CPU’s general-purpose registers. Then an instruc-
tion similar to a STORE instruction is executed by the CPU to “store” the bit
pattern in the controller. Likewise, to receive a bit pattern from a controller,
an instruction similar to a LOAD instruction is used.

In some computer designs, the transfer of data to and from controllers is
directed by the same LOAD and STORE op-codes that are already provided for
communication with main memory. In these cases, each controller is designed
to respond to references to a unique set of addresses, while main memory is
designed to ignore references to these locations. Thus, when the CPU sends
a message on the bus to store a bit pattern at a memory location that is
assigned to a controller, the bit pattern is actually “stored” in the controller
rather than main memory. Likewise, if the CPU tries to read data from such a
memory location, as in a LOAD instruction, it will receive a bit pattern from the
controller rather than from memory. Such a communication system is called
memory-mapped I/0 because the computer’s input/output devices appear to
the CPU to be in various memory locations (Figure 2.14).

An alternative to memory-mapped 1/O is to provide special op-codes
in the machine language to direct transfers to and from controllers. Instruc-
tions with these op-codes are called I/O instructions. As an example, if Vole
followed this approach, it might include an instruction such as 0xF5A3 to
mean “STORE the contents of register 0x5 in the controller identified by the
bit pattern 0xA3.”

CPU

Controller

o

Figure 2.13 Controllers attached to a machine’s bus

2.5 Communicating with Other Devices

Main
memory

Bus
CPU

—(Controller }— Peripheral device

Figure 2.14 A conceptual representation of memory-mapped I/O

Direct Memory Access

Since a controller is attached to a computer’s bus, it can carry on its own
communication with main memory during those nanoseconds in which the
CPU is not using the bus. This ability of a controller to access main memory
is known as direct memory access (DMA), and it is a significant asset to a
computer’s performance. For instance, to retrieve data from a sector of a
disk, the CPU can send requests encoded as bit patterns to the controller
attached to the disk, asking the controller to read the sector and place the
data in a specified area of main memory. The CPU can then continue with
other tasks while the controller performs the read operation and deposits
the data in main memory via DMA. Thus, two activities will be performed
at the same time. The CPU will be executing a program and the controller
will be overseeing the transfer of data between the disk and main memory.
In this manner, the computing resources of the CPU are not wasted during
the relatively slow data transfer.

The use of DMA also has the detrimental effect of complicating the
communication taking place over a computer’s bus. Bit patterns must move
between the CPU and main memory, between the CPU and each control-
ler, and between each controller and main memory. Coordination of all
this activity on the bus is a major design issue. Even with excellent designs,
the central bus can become an impediment as the CPU and the controllers
compete for bus access. This impediment is known as the von Neumann
bottleneck because it is a consequence of the underlying von Neumann
architecture in which a CPU fetches its instructions from memory over a
central bus.

Handshaking

The transfer of data between two computer components is rarely a one-way
affair. Even though we may think of a printer as a device that receives data,
the truth is that a printer also sends data back to the computer. After all, a
computer can produce and send characters to a printer much faster than the
printer can print them. If a computer blindly sent data to a printer, the printer
would quickly fall behind, resulting in lost data. Thus, a process such as print-
ing a document involves a constant two-way dialogue, known as handshaking,
in which the computer and the peripheral device exchange information about
the device’s status and coordinate their activities.

137

138

Chapter 2 Data Manipulation

Handshaking often involves a status word, which is a bit pattern that is
generated by the peripheral device and sent to the controller. The status word
is a bit map in which the bits reflect the conditions of the device. For example,
in the case of a printer, the value of the least significant bit of the status word
may indicate whether the printer is out of paper, while the next bit may indi-
cate whether the printer is ready for additional data. Still another bit may be
used to indicate the presence of a paper jam. Depending on the system, the
controller may respond to this status information itself or make it available
to the CPU. In either case, the status word provides the mechanism by which
communication with a peripheral device can be coordinated.

Popular Communication Media

Communication between computing devices is handled over two types of
paths: parallel and serial. These terms refer to the manner in which signals
are transferred with respect to each other. In the case of parallel communi-
cation, several signals are transferred at the same time, each on a separate
“line.” Such a technique is capable of transferring data rapidly but requires
a relatively complex communication path. Examples include a computer’s
internal bus where multiple wires or traces are used to allow large blocks of
data and other signals to be transferred simultaneously.

In contrast, serial communication is based on transferring signals one
after the other over a single line. Thus, serial communication requires a sim-
pler data path than parallel communication, which is the reason for its popu-
larity. USB and FireWire, which offer relatively high-speed data transfer over
short distances of only a few meters, are examples of serial communication
systems. For slightly longer distances (within a home or office building), serial
communication over Ethernet connections (Section 4.1), either by wire or
radio broadcast, are popular.

For communication over greater distances, traditional voice telephone
lines dominated the personal computer arena for many years. These com-
munication paths, consisting of a single wire over which tones are transferred
one after the other, are inherently serial systems. The transfer of digital data
over these lines is accomplished by first converting bit patterns into audible
tones by means of a modem (short for modulator-demodulator), transferring
these tones serially over the telephone system, and then converting the tones
back into bits by another modem at the destination.

For faster long-distance communication over traditional telephone lines,
telephone companies offer a service known as DSL (Digital Subscriber
Line), which takes advantage of the fact that existing telephone lines are
capable of handling a wider frequency range than that used by traditional
voice communication. More precisely, DSL uses frequencies above the audi-
ble range to transfer digital data while leaving the lower frequency spectrum
for voice communication. Although DSL has been highly successful, tele-
phone companies are rapidly upgrading their systems to fiber-optic lines,

2.5 Communicating with Other Devices

which support digital communication more readily than traditional tele-
phone lines.

Cable modems are a competing technology that modulate and demodu-
late bit patterns to be transmitted over cable television systems. Many cable
providers now make use of both fiber-optic lines and traditional coaxial cable
to provide both high-definition television signals and computer network
access.

Satellite links via high-frequency radio broadcast make computer net-

work access possible even in some remote locations far from high-speed tele-
phone and cable television networks.

Communication Rates

The rate at which bits are transferred from one computing component to
another is measured in bits per second (bps). Common units include Kbps
(kilo-bps, equal to one thousand bps), Mbps (mega-bps, equal to one mil-
lion bps), and Gbps (giga-bps, equal to one billion bps). (Note the distinc-
tion between bits and bytes—that is, 8 Kbps is equal to 1 KB per second.
In abbreviations, a lowercase b usually means bit whereas an uppercase B
means byte.)

For short distance communication, USB 3.0 and Thunderbolt provide
transfer rates of multiple Gbps, which is sufficient for most multimedia appli-
cations. This, combined with their convenience and relatively low cost, is why
they are popular for communication between home computers and local
peripherals such as printers, external disk drives, and cameras.

By combining multiplexing (the encoding or interweaving of data so
that a single communication path serves the purpose of multiple paths)
and data compression techniques, traditional voice telephone systems were
able to support transfer rates of 57.6 Kbps. This falls short of the needs of
today’s multimedia and Internet applications, such as high definition video
streaming from sites like Netflix or YouTube. To play MP3 music record-
ings requires a transfer rate of about 64 Kbps, and to play even low-quality
video clips requires transfer rates measured in units of Mbps. This is why
alternatives such as DSL, cable, and satellite links, which provide transfer
rates well into the Mbps range, have replaced traditional audio telephone
systems.

The maximum rate available in a particular setting depends on the type
of the communication path and the technology used in its implementation.
This maximum rate is often loosely equated to the communication path’s
bandwidth, although the term bandwidth also has connotations of capacity
rather than transfer rate. That is, to say that a communication path has a high
bandwidth (or provides broadband service) means that the communication
path has the ability to transfer bits at a high rate as well as the capacity to
carry large amounts of information simultaneously.

139

140 Chapter 2 Data Manipulation

2.5 Questions & Exercises

1. Assume that the Vole uses memory-mapped I/O and that the
address 0xBS is the location within the printer port to which
data to be printed should be sent.

a. If register 0x7 contains the ASCII code for the letter A, what
Vole machine language instruction should be used to cause
that letter to be printed at the printer?

b. If the machine executes a million instructions per second, how
many times can this character be sent to the printer in one second?

c. If the printer is capable of printing five traditional pages of
text per minute, will it be able to keep up with the characters
being sent to it in (b)?

2. Suppose that the hard disk on your personal computer rotates
at 3000 revolutions a minute, that each track contains 16 sectors,
and that each sector contains 1024 bytes. Approximately what
communication rate is required between the disk drive and the
disk controller if the controller is going to receive bits from the
disk drive as they are read from the spinning disk?

3. Estimate how long it would take to transfer a 300-page novel
encoded in 16-bit Unicode characters at a transfer rate of 54 Mbps.

- J

The Multi-Core CPU

As technology provides ways of placing more and more circuitry on a silicon chip, the physical distinc-
tion between a computer’s components diminishes. For instance, a single chip might contain a CPU
and main memory. This is an example of the “system-on-a-chip (SoC)” approach in which the goal is
to provide a complete apparatus in a single device that can be used as an abstract tool in higher-level
designs. In other cases, multiple copies of the same circuit are provided within a single device. This
latter tactic originally appeared in the form of chips containing several independent gates or perhaps
multiple flip-flops. Today’s state of the art allows for more than one entire CPU to be placed on a
single chip. This is the underlying architecture of devices known as multi-core CPUs, which consist of
two or more CPUs residing on the same chip along with shared cache memory. Such devices simplify
the construction of MIMD systems and are readily available for use in home computers.

““ 2.6 Programming Data Manipulation

One of the essential features of computer programming languages such as
Python is that they shield users from the tedious details of working with the
lowest levels of the machine. Having just completed much of a chapter on the

2.6 Programming Data Manipulation

lowest levels of data manipulation in computer processors, it is instructive to
review some of the major details that Python scripts shield the programmer
from needing to worry about.

As we will explore in greater detail in Chapter 6, high-level program-
ming language statements are mapped down to low-level machine instruc-
tions in order to be executed. A single Python statement might map to a
single machine instruction, or to many tens or even hundreds of machine
instructions, depending on the complexity of the statement and the effi-
ciency of the machine language. Different implementations of the Python
language interpreter, in concert with other elements of the computer's oper-
ating system software, take care of this mapping process for each particular
computer processor. As a result, the Python programmer does not need to
know whether she is executing her Python script on a RISC processor or a
CISC processor.

\/}) Essential Knowledge Statements

e Code in a programming language is often translated into code in another (lower
level) language to be executed on a computer.

We can recognize many Python operations that correspond closely to
the basic machine instructions for modern computers or for the simple Vole
machine described in Appendix C. Addition of Python integers and floating-
point numbers clearly resembles the ADD op-codes of our simple machine.
Assigning values to variables surely involves the LOAD, STORE, and MOVE op-
codes in some arrangement. Python shields us from worrying about which
processor registers are in use, but leverages the op-codes of the machine to
carry out our instructions. We cannot see the instruction register, program
counter, or memory cell addresses, but the Python script executes sequen-
tially, one statement after the other, in the same way as the simple machine
language programs.

\/}) Essential Knowledge Statements

e Program instructions are executed sequentially.

Logic and Shift Operations

Logic and shift operations can be executed on any kind of numerical data, but
because they often deal with individual bits of data, it is easiest to illustrate
these operations with binary values. Just as Python uses the ‘0x’ prefix to

141

142

Chapter 2 Data Manipulation

specify values in hexadecimal, the ‘0b’ prefix can be used to specify values in
binary.!

0b00110011
0b00001111

X
mask

Note that this is effectively no different from assigning x the value 51 (which
is 110011 in binary) or 0x33 (which is 51 expressed in hexadecimal), or from
assigning mask the value 15 (which is 1111 in binary) or 0x0F (15 in hexadeci-
mal). The representation we use to express the integer value in the Python
assignment statement does not change how it is represented in the computer,
only how human readers understand it.

Built-in Python operators exist for each of the bitwise logical operators
described in Section 2.4.

print(0b00000101 * 0b00000100) # Prints 5 XOR 4, which is 1
print(0b00000101 | 0b00000100) # Prints 5 OR 4, which is 5
print(0b00000101 & 0b00000100) # Prints 5 AND 4, which is 4

As a result, we can replicate each of the example problems of Section 2.4 as
Python code.

10011010
AND 11001001
10001000

print(0b10011010 & 0b11001001)

10011010
OR 11001001
11011011

print(0b10011010 | 0b11001001)

10011010
XOR 11001001
01010011

print(0b10011010 ~ 0b11001001)

H HH OHFHHE OHHH

For all of these examples, Python will print the result in its default output
representation, which is base-10. If the user would also like the output to be
displayed in binary notation, a built-in function exists to convert any integer
value into the string of zero and one characters for the corresponding binary
representation.

print(bin(0b10011010 & 0b11001001)) # Prints "0Ob10001000"
print(bin(0b10011010 | 0b11001001)) # Prints "Ob11011011"
print(bin(0b10011010 *» 0b11001001)) # Prints "Ob1010011"

Because newer versions of Python can use an arbitrary number of digits for
representing numbers, leading zeros are not printed. Thus, the third line above
prints only seven digits, rather than eight.

! This syntax is another recent addition to the evolving Python language. Make sure that you are using
at least Python 3 to replicate these examples.

2.6 Programming Data Manipulation

Python's built-in operators for performing logical shift operations consist
of dual greater-than and less-than symbols, visually suggesting the direction
of shift. The operand on the right of the operator indicates the number of bit
positions to shift.

print(0b00111100 >> 2) # Prints "15", which is 0b00001111
print(0b00111100 << 2) # Prints "240", which is 0b11110000

In addition to shifting bit masks left or right, bit shift operators are also an
efficient way to multiply (left shift) or divide (right shift) by powers of 2.

Control Structures

The control group of machine language instructions presented earlier in this
chapter affords us a mechanism for jumping from one part of a program to
another. In higher-level languages like Python, this enables what are called
control structures, syntax patterns that allow us to express algorithms more
succinctly. One example of this is the i f-statement, which allows a segment
of code to be conditionally skipped if a Boolean value in the script is not true.

if (water_temp > 140):
print('Bath water too hot!")

Intuitively, this Python snippet will be mapped to machine instructions that
make the comparison between the water_temp variable and the integer value
140, probably both previously loaded into registers. A conditional jump
instruction will skip over the machine instructions for the print() built-in if
the water_temp value was not 140 or larger.

Another control structure is the looping construct while, which allows
a segment of code to be executed multiple times, often subject to some
condition.

while (n < 10):
print(n)
n=n+1

Assuming the variable n starts with a value less than 10, this loop will continue
printing and incrementing n until it becomes greater than or equal to 10.

We will spend more time examining these and other control structures in
Chapter 5 and beyond. For now, we focus on a mechanism that allows us to
jump to another part of the program, carry out a desired task, and then return
to the program point from which we came.

Functions

We have already seen three built-in Python operations that do not follow the
same syntactic form as the arithmetic and logic operators.The print (), str()

143

144

Chapter 2 Data Manipulation

and bin() operations are invoked using given names instead of symbols, and
also involve parentheses wrapped around their operands.

Both of these are examples of a Python language feature called functions.
The term “function” in mathematics is often used to describe algebraic rela-
tionships, such as “f(x) = x> + 3x + 4”. Upon seeing such a function defini-
tion, we understand that in subsequent lines, the expression “f(5)” is taken to
mean that the value 5 should be plugged in wherever the parameter x occurs in
the expression defining f(). Thus, f(5) = 5% + 3%5 + 4 = 25 + 15 + 4 = 44,
This abstraction allows us to reuse the expression many times without having
to duplicate it. Programming language functions are quite similar in that they
allow us to use a name for a series of operations that should be performed on
the given parameter or parameters. Due to the way that this language feature
is mapped to lower-level machine languages, the appearance of a function in
an expression or statement is known as a function call, or sometimes calling a
function. Function calls are an important shortcut in programming languages
that reduce the complexity of the code.

\)) Essential Knowledge Statements

e A function is a named grouping of programming instructions.
e Functions are reusable programming abstractions.
e Functions reduce the complexity of writing and maintaining programs.

The occurrences of print() and bin() in the examples above are two such
function calls; they indicate that the Python interpreter will go execute the
definition of the named function, and then return to continue with its work.
The syntax is to follow the name of the function immediately with an open-
ing parenthesis, and then to give the function argument value that will be
plugged in for the parameter when the function definition is evaluated, fol-
lowed by a closing parenthesis. It is important to match opening and closing
parentheses — not doing so will cause a Python syntax error, and is a common
mistake for beginners. Each time a function is called, it can be given different
arguments to be plugged in for its parameters, allowing the code in the func-
tion to be reused many times with different parameters without needing to
duplicate the function code.

\29 Essential Knowledge Statements

e Parameters provide different values as input to procedures when they are called in
a program.

e Parameters generalize a solution by allowing a function to be used instead of
duplicated code

2.6 Programming Data Manipulation

From now on, we will follow the convention of including the parentheses
when talking about Python functions, such as print (), so as to clearly denote
them as distinct from variables or other items.

Functions come in many varieties beyond what we have already seen.
Some functions take more than one argument, such as the max () function:

x = 1034

y = 1056

z = 2078

biggest = max(x, y, z)

print(biggest) # Prints "2078"

Multiple arguments are separated by commas within the parentheses. Some
functions return a value, which is to say that the function call itself can appear
as part of a more complex expression, or as the right-hand side of an assign-
ment statement. These are sometimes called fruitful functions. This is the
case for both max () (as above) and bin (), which takes an integer value as an
argument, and returns the corresponding string of zeros and ones. Other func-
tions do not return a value, and usually are used as standalone statements, as
is the case for print (). Functions that do not return a value are sometimes
called void functions, or procedures, although Python makes no distinction
in its syntax rules. It makes no sense to assign the result of a void function to
a variable, as in

x=print('hello world!") # x is assigned None

although this is not an error in Python, per se, and is subtly different from not
assigning a value to x at all.

\/Q Essential Knowledge Statements

e Procedures have names and may have parameters and return values.

Each of the functions we have seen so far is one of the few dozen built-in
functions that Python knows about, but there are extensive libraries of addi-
tional functions that a more advanced script can refer to. The Python library
modules contain many useful functions that may not normally be required,
but can be called upon when needed.

Calculates the hypotenuse of a right triangle
import math

sideA
sideB

3.0
4.0

145

146

Chapter 2 Data Manipulation

Calculate third side via Pythagorean Theorem
hypotenuse = math.sqrt(sideA**2 + sideB**2)

print (hypotenuse)

In this example, the import statement forewarns the Python interpreter that
the script refers to the library called “math’; which happens to be one of the
standard set of library modules that Python comes equipped with. The sqrt ()
function defined within the math library module provides the square root of
the argument, which in this case was the expression of sideA squared plus
sideB squared. Note that the library function call includes both the module
name (“math”) and the function name (“sqrt”), joined by a period.

The Python math module includes dozens of useful mathematical func-
tions, including logarithmic, trigonometric, and hyperbolic functions, as well
as some familiar constant values such as math.pi.

Beyond the built-in and library module functions, Python provides syn-
tax for a script to define its own functions. We will define a few very simple
examples at the end of this section, and explore more elaborate variations in
a later chapter.

Input and Output

The previous example snippets and scripts have used the built-in Python
print () function to output results. Many programming languages provide
similar mechanisms for achieving input and output, providing programmers
with a convenient abstraction to move data in or out of the computer proces-
sor. In fact, these I/O built-ins communicate with the hardware controllers
and peripheral devices discussed in the previous section.

None of our example scripts thus far have required any input from the
user. Simple user input can be accomplished with the built-in Python input ()
function.

echo = input('Please enter a string to echo: ')
print(echo * 3)

The input () function takes as an optional argument a prompt string to
present to the user when waiting for input. When run, this script will pause
after displaying “Please enter a string to echo:’ and wait for the user to
type something. When the user hits the enter key, the script assigns the string
of characters typed (not including the enter key,) to the variable echo. The
second line of the script then outputs the string repeated three times. (Recall
that the “*” operator replicates string operands.)

Armed with the ability to acquire input, let's rewrite our hypotenuse

script to prompt a user for the side lengths rather than hardcode the values
into assignment statements.

2.6 Programming Data Manipulation

Calculates the hypotenuse of a right triangle
import math

Inputting the side lengths, first try

sideA = input('Length of side A? ')

sideB = input('Length of side B? ')

Calculate third side via Pythagorean Theorem
hypotenuse = math.sqrt(sideA**2 + sideB**2)

print (hypotenuse)

When run, this script prompts the user with, “Length of side A?’) and awaits
input. Let us suppose that the user types “3” and enter. The script prompts
the user with “Length of side B?’, and awaits input. Let us suppose that
the user types “4” and enter. At this point, the Python interpreter aborts the
script, printing out:

hypotenuse = math.sqrt(sideA**2 + sideB**2)
TypeError: unsupported operand type(s) for ** or pow():

'str' and 'int'

This type of error can be easy to create in a dynamically-typed language like
Python. Our hypotenuse calculation, which worked in the earlier version of
the script, now causes an error when the values have been read as input from
the user instead. The problem is indeed a 'TypeError', stemming from the
fact that Python no longer knows how to take the square of variable sideA,
because sideA is now a character string in this version of the script, rather
than an integer as before. The problem comes not from the line that calcu-
lates the hypotenuse, but from earlier in the script, when the values of sideA
and sideB are returned from input (). This, too, is common when encounter-
ing errors with programming languages. The Python interpreter attempts to
provide the line of script responsible for the problem, but the real culprit is
actually earlier in the script.

In the string-echoing snippet above, it was clear that the value assigned
to echo should be the string of characters typed in by the user. The input ()
function behaves in the same way in the hypotenuse program, even though
the programmer's intent is now to enter integer values. The representation of
the ASCII- or UTF-8-encoded string “4” differs from the two's complement
representation of the integer 4, and the Python script must explicitly make
the conversion from one representation to the other before proceeding to
calculations with integers.

Fortunately, another built-in function provides the capability. The int ()
function attempts to convert its argument into an integer representation. If it
cannot, an appropriate error message is produced.

There are at least three places that we can use the int() function to
remove the bug in this script. We can call it before even assigning the result

147

148

Chapter 2 Data Manipulation

of input() to the variable. We can add new lines of script that are only for
calling the conversion function. Or we can make the conversion just before
squaring the variable within the call to the math.sqrt () function. The revised
script below uses the first option; the other two are left as an exercise for the
reader.

Calculates the hypotenuse of a right triangle
import math

Inputting the side lengths, with integer conversion
sideA = int(input('Length of side A? "))

sideB = int(input('Length of side B? "))

Calculate third side via Pythagorean Theorem
hypotenuse = math.sqrt(sideA**2 + sideB**2)

print (hypotenuse)

The revised script operates as intended, and can be used for many right tri-
angles without having to edit the script, as in the pre-input version.

As a final note, the int () function performs its conversion by carefully
examining the string argument and interpreting it as a number. If the input
string is a number, but not an integer, as for example, “3.14” the int () func-
tion discards the fractional portion, and returns only the integer value. This
operation is a truncation, and will not “round up” as a human might expect.

Similar conversion functions exist in Python for all of the other standard
value types.

Marathon Training Assistant

The complete Python script below demonstrates many of the concepts intro-
duced in this section. As the popularity of recreational distance running
has increased, many participants find themselves pursuing complex train-
ing schedules to prepare their bodies for the rigors of running a marathon.
This script assists a runner who wishes to calculate how long her training
workout will take, based upon the distance and pace she wishes to run.
Given a pace (number of minutes and seconds to run a single mile) and a
total mileage, this script calculates the projected elapsed time to run the
workout, as well as a user-friendly speed calculation in miles per hour. Fig-
ure 2.15 gives some example data points; in each row, given the first three
columns as input, the last three columns would be the expected results. Note
that different implementations of Python may print a different number of
decimal places from Figure 2.15 for speed values that don't work out to
round numbers.

2.6 Programming Data Manipulation -

Figure 2.15 Example marathon training data

Marathon training assistant.
import math

This function converts a number of minutes and seconds into just seconds.
def total_seconds(min, sec):
return min * 60 + sec

This function calculates a speed in miles per hour given
a time (in seconds) to run a single mile.
def speed(time):

return 3600 / time

Prompt user for pace and mileage.
pace_minutes = int(input('Minutes per mile? "))
pace_seconds = int(input('Seconds per mile? "))
miles = int(input('Total miles? '))

Calculate and print speed.

mph = speed(total_seconds(pace_minutes, pace_seconds))
print('Your speed is')

print (mph)

Calculate elapsed time for planned workout.

total = miles * total_seconds(pace_minutes, pace_seconds)
elapsed_minutes = total // 60

elapsed_seconds = total % 60

print('Your total elapsed time is')
print(elapsed_minutes)
print(elapsed_seconds)

The script above uses both built-in functions — input(), int(), and
print () — as well as user-defined functions — speed() and total_seconds ().
The keyword def precedes a user function definition, and is followed by the
name for the function and a list of parameters to be provided when the func-
tion is called. The indented line that follows is called the body of a function,

150

Chapter 2 Data Manipulation

and expresses the steps that define the function. In a later chapter, we will
see examples of functions with more than one statement in their body. The
keyword return highlights the expression that will be calculated to find the
result of the function.

The user-defined functions are defined at the top of the script, but are not
actually invoked until the script reaches the lines where they are called as part
of a larger expression. Note also the way in which function calls are stacked
in this script. The result of the calls to input() are immediately passed as
arguments to the int () function, and the result of the int () function is then
assigned to a variable. Similarly, the result of total_seconds () is immediately
passed as an argument to the speed() function, whose result is then assigned
to the variable mph. In each of these cases, it would be permissible to make
the function calls one at a time, assign the result to a new variable, and then
call the next function that relies on the first result. However, this more com-
pact form is more succinct and does not require a proliferation of temporary
variables to hold intermediate results of the calculation.

Given inputs of 7 minutes and 45 seconds per mile, for 6 miles, this script
outputs:

Your speed is
7.74193548387

Your total elapsed time is
46

30

The format of this output remains quite primitive. It lacks proper units
(7.74193548387 mph, and 46 minutes, 30 seconds,), prints an inappropriate
number of decimal places for a simple calculation, and breaks lines in too
many places. Cleaner output is left as an exercise for the reader.

2.6 Questions and exercise

1. The hypotenuse example script truncates the sides to integers,
but outputs a floating-point number. Why? Adapt the script to
output an integer.

2. Adapt the hypotenuse script to use floating-point numbers as
input, without truncating them. Which is more appropriate, the
integer version from the previous question or the floating-point
version?

3. The Python built-in function str () will convert a numerical
argument into a character string representation, and the ‘+’ can
be used to concatenate strings together. Use these to modify the
marathon script to produce cleaner output, for example:

Your speed is 7.74193548387 mph
Your total elapsed time is 46 minutes, 30 seconds

2.7 Other Architectures

4. Use the Python built-in bin() to write a script that reads a
base-10 integers as input, and outputs the corresponding binary
representation of that integer in ones and zeros.

5. The XOR operation is often used both for efficiently calculating
checksums (see Section 1.9) and encryption (see Section 4.5).
Write a simple Python script that reads in a number, and
outputs that number XORed with a pattern of ones and zeros,
such as 0x55555555. The same script will “encrypt” a number
into a seemingly unrelated number, but when run again and
given the encrypted number as input, will return the original
number.

6. Explore some of the error conditions that you can create with
unexpected inputs to the example scripts from this section.
What happens if you enter all zeros for the hypotenuse script or
the marathon script? What about negative numbers? Strings of
characters instead of numbers?

2.7 Other Architectures

To broaden our perspective, let us consider some alternatives to the tradi-
tional machine architecture we have discussed so far.

Pipelining

Electric pulses travel through a wire no faster than the speed of light. Since
light travels approximately 1 foot (about 30cm) in a nanosecond (one bil-
lionth of a second), it requires at least 2 nanoseconds for the CPU to fetch
an instruction from a memory cell that is 1 foot (30cm) away. (The read
request must be sent to memory, requiring at least 1 nanosecond, and
the instruction must be sent back to the CPU, requiring at least another
nanosecond.) Consequently, to fetch and execute an instruction in such
a machine requires several nanoseconds—which means that increasing
the execution speed of a machine ultimately becomes a miniaturization
problem.

However, increasing execution speed is not the only way to improve a
computer’s performance. The real goal is to improve the machine’s through-
put, which refers to the total amount of work the machine can accomplish in
a given amount of time.

An example of how a computer’s throughput can be increased without
requiring an increase in execution speed involves pipelining, which is the tech-
nique of allowing the steps in the machine cycle to overlap. In particular, while
one instruction is being executed, the next instruction can be fetched, which

151

152

Chapter 2 Data Manipulation

means that more than one instruction can be in “the pipe” at any one time,
each at a different stage of being processed. In turn, the total throughput of
the machine is increased even though the time required to fetch and execute
each individual instruction remains the same. (Of course, when a JUMP instruc-
tion is reached, any gain that would have been obtained by prefetching is not

realized because the instructions in “the pipe” are not the ones needed after
all.)

Modern machine designs push the pipelining concept beyond our simple
example. They are often capable of fetching several instructions at the same
time and actually executing more than one instruction at a time when those
instructions do not rely on each other.

Multiprocessor Machines

Pipelining can be viewed as a first step toward parallel processing, which is
the performance of several activities at the same time. However, true paral-
lel processing requires more than one processing unit, resulting in computers
known as multiprocessor or multi-core machines.

Most computers today are designed with this idea in mind. One strategy
is to attach several processing units, each resembling the CPU in a single-
processor machine, to the same main memory. In this configuration, the
processors can proceed independently yet coordinate their efforts by leav-
ing messages to one another in the common memory cells. For instance,
when one processor is faced with a large task, it can store a program for
part of that task in the common memory and then request another pro-
cessor to execute it. The result is a machine in which different instruction
sequences are performed on different sets of data, which is called a MIMD
(multiple-instruction stream, multiple-data stream) architecture, as opposed
to the more traditional SISD (single-instruction stream, single-data stream)
architecture.

A variation of multiple-processor architecture is to link the processors
together so that they execute the same sequence of instructions in unison,
each with its own set of data. This leads to a SIMD (single-instruction stream,
multiple-data stream) architecture. Such machines are useful in applications
in which the same task must be applied to each set of similar items within a
large block of data. Another approach to parallel processing is to construct
large computers as conglomerates of smaller machines, each with its own
memory and CPU. Within such an architecture, each of the small machines
is coupled to its neighbors so that tasks assigned to the whole system can be
divided among the individual machines. Thus, if a task assigned to one of the
internal machines can be broken into independent subtasks, that machine
can ask its neighbors to perform these subtasks concurrently. The original
task can then be completed in much less time than would be required by a
single-processor machine.

Chapter Review Problems

2.7 Questions & Exercises

1. Referring back to Question 3 of Section 2.3, if the machine used
the pipeline technique discussed in the text, what will be in “the
pipe” when the instruction at address OxA A is executed? Under
what conditions would pipelining not prove beneficial at this
point in the program?

2. What conflicts must be resolved in running the program in
Question 4 of Section 2.3 on a pipeline machine?

3. Suppose there were two “central” processing units attached
to the same memory and executing different programs.
Furthermore, suppose that one of these processors needs to add
one to the contents of a memory cell at roughly the same time
that the other needs to subtract one from the same cell. (The net
effect should be that the cell ends up with the same value with
which it started.)

a. Describe a sequence in which these activities would result in

the cell ending up with a value one less than its starting value.

b. Describe a sequence in which these activities would result in
the cell ending up with a value one greater than its starting
value.

J

153

(Asterisked problems are associated with optional sections.)

1. a. In what way are general-purpose registers 4. What is the value of the program counter

and main memory cells similar?

main memory cells differ?
2. Answer the following questions in Vole
machine language (Appendix C).
a. Write the instruction 0x2304 as a string of 16 bits.

b. Write the op-code of the instruction 0xB2A5 Address Contents
as a string of 4 bits. 0x00 0x22
c. Write the operand field of the instruction 0x01 0x11
0xB2AS as a string of 12 bits. 0x02 0x32
3. Suppose a block of data is stored in the 0x03 0x02
memory cells of the Vole from address 0x98 0x04 0xCO
to 0xA2, inclusive. How many memory cells 0x05 0x00

are in this block? List their addresses.

in the Vole immediately after executing

b. In what way do general-purpose registers and the instruction 0xBOCD?

5. Suppose the memory cells at addresses
0x00 through 0x05 in the Vole contain
the following bit patterns:

CHAPTER REVIEW PROBLEMS _.
H

154

10.

11.

Chapter 2 Data Manipulation

Assuming that the program counter
initially contained 0x00, record the contents
of the program counter, instruction register,
and memory cell at address 0x02 at the end
of each fetch phase of the machine cycle
until the machine halts.

Suppose three values x,y, and z are
stored in a machine’s memory. Describe
the sequence of events (loading registers
from memory, saving values in memory,
and so on) that leads to the computation
of x + y + z. How about (2x) + y?

. The following are instructions written in

Vole machine language. Translate them

into English.
a. 0x7123 b. 0x40E1 c. 0xA304
d. 0xB100 e. 0x2BCD

. Suppose a machine language is designed

with an op-code field of 4 bits. How
many different instruction types can the
language contain? What if the op-code
field is increased to 6 bits?

Translate the following instructions from

English into Vole.

a. LOAD register Ox6 with the value 0x77.

b. LOAD register Ox7 with the contents of memory
cell 0x77

c. JUMP to the instruction at memory location
0x24 if the contents of register 0x0 equals the
value in register OxA.

d. ROTATE register Ox4 three bits to the right.

e. AND the contents of registers OxE and 0x2 leav-
ing the result in register 0x1.

Rewrite the program in Figure 2.7

assuming that the values to be added are

encoded using floating-point notation

rather than two’s complement notation.

Classify each of the following Vole
instructions in terms of whether its
execution changes the contents of the
memory cell at location 0x3C, retrieves the
contents of the memory cell at location
0x3C, or is independent of the contents of
the memory cell at location 0x3C.

a. 0x353C b. 0x253C c. 0x153C
d. 0x3C3C e. 0x403C

12.

13.

14.

Suppose the memory cells at addresses
0x00 through 0x03 in the Vole contain
the following bit patterns:

Address Contents
0x00 0x26
0x01 0x55
0x02 0xCO
0x03 0x00

a. Translate the first instruction into English.

b. If the machine is started with its program
counter containing 0x00, what bit pattern is
in register 0x6 when the machine halts?

Suppose the memory cells at addresses
0x00 through 0x02 in the Vole contain
the following bit patterns:

Address Contents
0x00 0x12
0x01 0x21
0x02 0x34

a. What would be the first instruction executed if
we started the machine with its program coun-
ter containing 0x00?

b. What would be the first instruction executed if
we started the machine with its program coun-
ter containing 0x01?

Suppose the memory cells at addresses
0x00 through 0x05 in the Vole contain
the following bit patterns:

Address Contents
0x00 0x12
0x01 0x02
0x02 0x32
0x03 0x42
0x04 0xCO
0x05 0x00

When answering the following questions,

assume that the machine starts with its

program counter equal to 0x00.

a. Translate the instructions that are executed
into English.

b. What bit pattern is in the memory cell at
address 0x42 when the machine halts?

c. What bit pattern is in the program counter
when the machine halts?

15. Suppose the memory cells at addresses

16.

17.

0x00 through 0x09 in the Vole contain
the following bit patterns:

Address Contents
0x00 0x1C
0x01 0x03
0x02 0x2B
0x03 0x03
0x04 0x5A
0x05 0xBC
0x06 0x3A
0x07 0x00
0x08 0xCO0
0x09 0x00

Assume that the machine starts with its

program counter containing 0x00.

a. What will be in the memory cell at address
0x00 when the machine halts?

b. What bit pattern will be in the program coun-
ter when the machine halts?

Suppose the memory cells at addresses

0x00 through 0x07 in the Vole contain

the following bit patterns:

Address Contents
0x00 0x2B
0x01 0x07
0x02 0x3B
0x03 0x06
0x04 0xCO0
0x05 0x00
0x06 0x00
0x07 0x23

a. List the addresses of the memory cells that
contain the program that will be executed if
we start the machine with its program counter
containing 0x00.

b. List the addresses of the memory cells that are
used to hold data.

Suppose the memory cells at addresses
0x00 through 0x0D in the Vole contain
the following bit patterns:

Address Contents
0x00 0x20
0x01 0x04

18.

155

Chapter Review Problems

Address Contents
0x02 0x21
0x03 0x01
0x04 0x40
0x05 0x12
0x06 0x51
0x07 0x12
0x08 0xB1
0x09 0x0C
0x0A 0xBO
0x0B 0x06
0x0C 0xCO
0x0D 0x00

Assume that the machine starts with its

program counter containing 0x00.

a. What bit pattern will be in register 0x0 when
the machine halts?

b. What bit pattern will be in register 0x1 when
the machine halts?

c. What bit pattern is in the program counter
when the machine halts?

Suppose the memory cells at addresses
0xFO0 through 0xFD in the Vole contain
the following (hexadecimal) bit patterns:

Address Contents
0xFO 0x20
0xF1 0x00
OxF2 0x22
0xF3 0x02
0xF4 0x23
0xF5 0x04
0xF6 0xB3
OxF7 OxFC
OxF8 0x50
0xF9 0x02
OxFA 0xBO
0xFB 0xF6
OxFC 0xCO
O0xFD 0x00

If we start the machine with its program
counter containing 0xF0, what is the
value in register 0x0 when the machine
finally executes the halt instruction at
location OxFC?

156

19.

20.

21.

22,

Chapter 2 Data Manipulation

If the Vole executes an instruction every
microsecond (a millionth of a second),
how long does it take to complete the
program in Problem 18?

Suppose the memory cells at addresses
0x20 through 0x28 in the Vole contain
the following bit patterns:

Address Contents
0x20 0x12
0x21 0x20
0x22 0x32
0x23 0x30
0x24 0xBO
0x25 0x21
0x26 0x24
0x27 0xCO
0x28 0x00

Assume that the machine starts with its

program counter containing 0x20.

a. What bit patterns will be in registers 0x0, 0x1,
and 0x2 when the machine halts?

b. What bit pattern will be in the memory cell at
address 0x30 when the machine halts?

c. What bit pattern will be in the memory cell at
address 0xBO when the machine halts?

Suppose the memory cells at addresses
0xAF through 0xB1 in the Vole contain
the following bit patterns:

Address Contents
0xAF 0xB0
0xB0 0xBO0
0xB1 0xAF

What would happen if we started the machine
with its program counter containing OxAF?
Suppose the memory cells at addresses
0x00 through 0x05 in the Vole contain

the following (hexadecimal) bit patterns:

Address Contents
0x00 0x25
0x01 0xBO
0x02 0x35
0x03 0x04
0x04 0xCO
0x05 0x00

23.

24.

If we start the machine with its program
counter containing 0x00, when does the
machine halt?

In each of the following cases, write a

short program in Vole to perform the

requested activities. Assume that each

of your programs is placed in memory

starting at address 0x00.

a. Move the value at memory location 0xD8 to
memory location 0xB3.

b. Interchange the values stored at memory loca-
tions 0xD8§ and 0xB3.

c. If the value stored in memory location 0x44
is 0x00, then place the value 0x01 in memory
location 0x46; otherwise, put the value OxFF in
memory location 0x46.

A game that used to be popular among

computer hobbyists is core wars—a

variation of Battleship. (The term

core originates from an early memory

technology in which Os and 1s were

represented as magnetic fields in little

rings of magnetic material. The rings were

called cores.) The game is played between

two opposing programs, each stored in
different locations of the same computer’s
memory. The computer is assumed to
alternate between the two programs,
executing an instruction from one

followed by an instruction from the other.

The goal of each program is to cause the

other to malfunction by writing extraneous

data on top of it; however, neither program
knows the location of the other.

a. Write a program in Vole that approaches the
game in a defensive manner by being as small
as possible.

b. Write a program in Vole that tries to avoid any
attacks from the opposing program by moving
to different locations. More precisely, begin-
ning at location 0x00, write a program that will
copy itself to location 0x70 and then jump to
location 0x70.

c. Extend the program in (b) to continue relo-
cating to new memory locations. In particular,
make your program move to location 0x70,
then to OXEO (= 0x70 + 0x70), then to 0x60
(= 0x70 + 0x70 + 0x70), etc.

25. Write a program in Vole to compute the

26.

27.

28.

29

0

sum of floating-point values stored at
memory locations 0xA0, 0xA1, 0xA2,
and 0xA3. Your program should store the
total at memory location 0xA4.

Suppose the memory cells at addresses
0x00 through 0x05 in the Vole contain
the following (hexadecimal) bit patterns:

Address Contents
0x00 0x20
0x01 0xCO0
0x02 0x30
0x03 0x04
0x04 0x00
0x05 0x00

What happens if we start the machine
with its program counter containing 0x00?

What happens if the memory cells at
addresses 0x08 and 0x09 of the Vole contain
the bit patterns 0xB0 and 0x08, respectively,
and the machine is started with its program
counter containing the value 0x08?

Suppose the following program, written in
Vole, is stored in main memory beginning at
address 0x30 (hexadecimal). What task will
the program perform when executed?

0x2003
0x2101
0x2200
0x2310
0x1400
0x3410
0x5221
0x5331
0x3239
0x333B
0xB248
0xB038
0xC000

Summarize the steps involved when the Vole
performs an instruction with op-code 0xB.

Express your answer as a set of directions as
though you were telling the CPU what to do.

157

Chapter Review Problems

*30. Summarize the steps involved when

*31.

*33

the Vole performs an instruction with
op-code 0x5. Express your answer as
a set of directions as though you were
telling the CPU what to do.

Summarize the steps involved when
the Vole performs an instruction

with op-code 0x6. Express your
answer as a set of directions as

though you were telling the CPU what
to do.

. Suppose the registers 0x4 and 0x5 in the

*34,

Vole contain the bit patterns 0x3A and
0xC8, respectively. What bit pattern is
left in register 0x0 after executing each
of the following instructions:
a. 0x5045 b. 0x6045

d. 0x8045 e. 0x9045

Write Vole programs to perform each of

the following tasks:

a. Copy the bit pattern stored in memory loca-

tion 0x44 into memory location OxAA.

Change the least significant 4 bits in the

memory cell at location 0x34 to Os while

leaving the other bits unchanged.

c. Copy the least significant 4 bits from mem-
ory location OxAS into the least significant 4
bits of location OxA6 while leaving the other
bits at location 0xA6 unchanged.

. Copy the least significant 4 bits from mem-
ory location 0xAS into the most significant
4 bits of 0xAS. (Thus, the first 4 bits in 0xAS
will be the same as the last 4 bits.)

Perform the indicated operations:

a. 111001 b. 000101
AND 101001 AND 101010

c. 001110 d. 111011

AND

AND 010101 110111
010100

€. 111001 f.
101010

OR 101001 OR
8. 00100 h. 101010
110101

OR 010101 OR
L. 111001 j- 000111
XOR 101010
111111

101001
XOR 110101

c. 0x7045

b.

XOR
010000 L.
XOR 010101

158

*38,

*36.

*37.

*38.

*39.

*40,

“41.

Chapter 2 Data Manipulation

Identify both the mask and the logical
operation needed to accomplish each of
the following objectives:

a. Put 1s in the upper 4 bits of an 8-bit pattern
without disturbing the other bits.

b. Complement the most significant bit of an
8-bit pattern without changing the other bits.

c. Complement a pattern of 8 bits.

d. Put a 0 in the least significant bit of an 8-bit
pattern without disturbing the other bits.

e. Put 1s in all but the most significant bit of
an 8-bit pattern without disturbing the most
significant bit.

f. Filter out all of the green color component
from an RGB bitmap image pixel in which
the middle 8 bits of a 24-bit pattern store the
green information.

g. Invert all of the bits in a 24-bit RGB bitmap
pixel.

h. Set all the bits in a 24-bit RGB bitmap pixel
to 1, indicating the color white.

Write and test short Python scripts

to implement each of the parts of the

previous question.

Identify a logical operation (along

with a corresponding mask) that, when

applied to an input string of 8 bits,

produces an output string of all Os if and

only if the input string is 10000001.

Write and test a short Python script to
implement the previous question.
Describe a sequence of logical
operations (along with their
corresponding masks) that, when
applied to an input string of 8 bits,
produces an output byte of all Os if the
input string both begins and ends with
1s. Otherwise, the output should contain
at least one 1.

Write and test a short Python script to
implement the previous question.

What would be the result of performing
a 4-bit left circular shift on the following
bit patterns?
a. 010101
d. 101000

b. 11110000
e. 00001

c. 001

*42,

43,

48,

*46.

417,

What would be the result of
performing a 2-bit right circular shift
on the following bytes represented
in hexadecimal notation? (Give your
answers in hexadecimal notation.)

a. 0x3F b. 0x0OD

c. OxFF d. 0x77

a. What single instruction in the Vole machine
language could be used to accomplish a 5-bit
right circular shift of register 0xB?

b. What single instruction in the Vole machine
language could be used to accomplish a 2-bit
left circular shift of register 0xB?

. Write a Vole program that reverses the

contents of the memory cell at address
0x8C. (That is, the final bit pattern at
address 0x8C when read from left to
right should agree with the original
pattern when read from right to left.)

Write a Vole program that subtracts the
value stored at 0OxA1 from the value stored
at address 0xA2 and places the result at
address OxAO0. Assume that the values are
encoded in two’s complement notation.

High-definition video can be delivered
at a rate of 30 frames per second (fps),
where each frame has a resolution of
1920 x 1080 pixels using 24 bits per
pixel. Can an uncompressed video
stream of this format be sent over a
USB 1.1 serial port? USB 2.0 serial
port? USB 3.0 serial port? (Note: The
maximum speeds of USB 1.1, USB 2.0,
and USB 3.0 serial ports are 12Mbps,
480Mbps, and 5Gbps, respectively.)

Suppose a person is typing forty words
per minute at a keyboard. (A word is
considered to be five characters.) If

a machine executes 500 instructions
every microsecond (millionth of a
second), how many instructions does
the machine execute during the time
between the typing of two consecutive
characters?

159

Social Issues

*48. How many bits per second must a at 250 Kbps. If a burst of atmospheric
keyboard transmit to keep up with a interference lasts 6.96 seconds, how
typist typing forty words per minute? many data bits will be affected?
(Assume each character is encoded in *83, Suppose you are given 32 processors,
ASCII and each word consists of six each capable of finding the sum of
characters.) two multidigit numbers in a millionth

*49. Suppose the Vole communicates of a second. Describe how parallel
with a printer using the technique of processing techniques can be applied to
memory-mapped I/O. Suppose also that find the sum of 64 numbers in only six-
address OxFF is used to send characters millionths of a second. How much time
to the printer, and address OxFE is does a single processor require to find
used to receive information about the this same sum?
printer’s status. In particular, suppose 54, Summarize the difference between
the least significant bit at the address a CISC architecture and a RISC
OxFE indicates whether the printer architecture.
is ready to receive another character *#55. Identify two approaches to increasing
(with a 0 indicating “not ready” and throughput.
a1 indicating “ready”). Starting at *56. Describe how the average of a
addr‘ess 0x00, Write a maching langpage collection of numbers can be computed
routine that waits until the printer is more rapidly with a multiprocessor
ready for another character and then machine than a single processor
sends the character represented by the machine.
bit Pattern in register 0x5 to the prm"ter. *57. Write and test a Python script that reads

*50. Write a Vole program that places 0s in in a floating-point radius of a circle, and
all the memory cells from address 0xA0 outputs the circumference and area of
through 0xCO0 but is small enough to fit the circle.

?ﬁ the 11111%m103r y cells from address 0x00 *58. Write and test a Python script that reads
rough bxto.) in a character string and an integer, and

*51. Suppose a machine has 200 GB of outputs the character string repeated
storage space available on a hard disk the number of times given by the
and receives data over a broadband integer.
connection at the rate (?f 15 Mbps: Al *59. Write and test a Python script that
thlS‘ rate, how long will it take to fill the reads in two floating-point side lengths
available storage space? of a right triangle, and outputs the

*52. Suppose a satellite system is being hypotenuse length, perimeter, and area.

used to receive a serial data stream

SOCIAL ISSUES

The following questions are intended as a guide to the ethical/social/legal
issues associated with the field of computing. The goal is not merely to
answer these questions. You should also consider why you answered as you

160 Chapter 2 Data Manipulation

did and whether your justifications are consistent from one question to the
next.
. 1. Suppose a computer manufacturer develops a new machine
architecture. To what extent should the company be allowed to own
that architecture? What policy would be best for society?

2. In a sense, the year 1923 marked the birth of what many now call
planned obsolescence. This was the year that General Motors, led by
Alfred Sloan, introduced the automobile industry to the concept of
model years. The idea was to increase sales by changing styling rather
than necessarily introducing a better automobile. Sloan is quoted as
saying, “We want to make you dissatisfied with your current car so
you will buy a new one.” To what extent is this marketing ploy used
today in the computer industry?

3. We often think in terms of how computer technology has changed
our society. Many argue, however, that this technology has often
kept changes from occurring by allowing old systems to survive
and, in some cases, become more entrenched. For example, would a

. central government’s role in society have survived without computer

technology? To what extent would centralized authority be present
today had computer technology not been available? To what extent
would we be better or worse off without computer technology?

4. Is it ethical for an individual to take the attitude that he or she does
not need to know anything about the internal details of a machine
because someone else will build it, maintain it, and fix any problems
that arise? Does your answer depend on whether the machine is a
computer, automobile, nuclear power plant, or toaster?

5. Suppose a manufacturer produces a computer chip and later
discovers a flaw in its design. Suppose further that the manufacturer
corrects the flaw in future production but decides to keep the original
flaw a secret and does not recall the chips already shipped, reasoning
that none of the chips already in use are being used in an application
in which the flaw will have consequences. Is anyone hurt by the

. manufacturer’s decision? Is the manufacturer’s decision justified if

no one is hurt and the decision keeps the manufacturer from loosing
money and possibly having to layoff employees?

6. Does advancing technology provide cures for heart disease or is it a
source of a sedentary lifestyle that contributes to heart disease?

7. It is easy to imagine financial or navigational disasters that may occur
as the result of arithmetic errors due to overflow and truncation
problems. What consequences could result from errors in image
storage systems due to loss of image details (perhaps in fields such as

. reconnaissance or medical diagnosis)?

. 8. ARM Holdings is a small company that designs the processors
for a wide variety of consumer electronic devices. It does not
manufacture any of the processors; instead the designs are licensed

Additional Reading =~ 161

to semiconductor vendors (such as Qualcomm, Samsung, and

Texas Instruments) who pay a royalty for each unit produced. This
business model spreads the high cost of research and development of
computer processors across the entire consumer electronic market.
Today, over 95 percent of all cellular phones (not just smartphones),
over 40 percent of all digital cameras, and 25 percent of Digital

TVs use an ARM processor. Furthermore, ARM processors are
found in tablets, music players, game controllers, electronic book
readers, navigation systems, and the list goes on. Given this, do you
consider this company to be a monopoly? Why or why not? As
consumer devices play an ever-increasing role in today’s society, is
the dependency on this little-known company good, or does it raise
concerns?

BN AooimioNAL READING [

Carpinelli, J. D. Computer Systems Organization and Architecture. Boston,
MA: Addison-Wesley, 2001.

Comer, D. E. Essentials of Computer Architecture, 2nd ed. Boca Raton, FL:
Taylor & Francis, 2017.

Dandamudi, S P. Guide to RISC Processors for Programmers and Engineers.
New York: Springer, 2005.

Furber, S. ARM System-on-Chip Architecture,?nd ed. Boston, MA: Addison-
Wesley, 2000.

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky. Computer Organization, Sth
ed. New York: McGraw-Hill, 2002.

Knuth, D. E. The Art of Computer Programming, Vol. 1,3rd ed. Boston, MA:
Addison-Wesley, 1998.

Murdocca, M. J. and V. P. Heuring. Computer Architecture and Organization:
An Integrated Approach. New York: Wiley, 2007

Stallings, W. Computer Organization and Architecture,10th ed. Harlow, Essex,
England: Pearson, 2016.

Tanenbaum, A. S. Structured Computer Organization, 6th ed. Upper Saddle
River, NJ: Prentice-Hall, 2012.

Chapter

In this chapter, we study operating systems, which are software packages
that coordinate a computer’s internal activities as well as oversee its com-
munication with the outside world. It is a computer’s operating system that
transforms the computer hardware into a useful tool. Our goal is to under-
stand what operating systems do and how they do it. Such a background is
central to being an enlightened computer user. l

3.1 THE HISTORY OF OPERATING *3.4 HANDLING COMPETITION

SYSTEMS AMONG PROCESSES
3.2 OPERATING SYSTEM pemaphores
ARCHITECTURE
A Software Survey 3.5 SECURITY
Components of an Operating System Attacks from the Outside
Getting It Started Attacks from Within
3.3 COORDINATING THE MACHINE’S * Asterisks indicate suggestions for optional
ACTIVITIES sections

The Concept of a Process
Process Administration

Operating Systems

ENDURING UNDERSTANDINGS AND LEARNING OUTCOMES

An operating system is the software LO. Explain the operating .system concept
that controls the overall operation of a of a process, and the potential concerns
computer. that arise when a system contains multiple

processes competing for resources.
LO. Explain how operating systems have

evolved from the earliest batch process- LO. Identify the conditions required for
ing systems to complex multitasking deadlock to occur.
environments.
Cybersecurity is an important concern for
LO. Identify the main components of operating systems and the software that
commonly used operating systems. is built on them.
Operating systems execute user LO. Identify existing cybersecurity
programs, coordinate activities, and concerns and the modern operating system
manage system resources. security features designed to guard against

them.
LO. Identify the various classifications of

application and operating system software
found on modern computers.

164

Chapter 3 Operating Systems

An operating system is the software that controls the overall operation of a
computer. It provides the means by which a user can store and retrieve files,
provides the interface by which a user can request the execution of programs,
and provides the environment necessary to execute the programs requested.

Perhaps the best-known example of an operating system is Windows,
which is provided in numerous versions by Microsoft and widely used in
the PC arena. Another well-established example is UNIX, which is a popu-
lar choice for larger computer systems as well as PCs. In fact, UNIX is the
core of two other popular operating systems: Mac OS, which is the operating
system provided by Apple for its range of Mac machines, and Solaris, which
was developed by Sun Microsystems (now owned by Oracle). Still another
example of an operating system found on both large and small machines is
Linux, which was originally developed non-commercially by computer enthu-
siasts and is now available through many commercial sources, including IBM.

For casual computer users, the differences between operating systems are
largely cosmetic. For computing professionals, different operating systems can
represent major changes in the tools they work with or the philosophy they
follow in disseminating and maintaining their work. Nevertheless, at their
core, all mainstream operating systems address the same kinds of problems
that computing experts have faced for more than half a century.

3.1 The History of Operating Systems

Today’s operating systems are large, complex software packages that have
grown from humble beginnings. The computers of the 1940s and 1950s were
not very flexible or efficient. Machines occupied entire rooms. Program exe-
cution required significant preparation of equipment in terms of mounting
magnetic tapes, placing punched cards in card readers, setting switches, and so
on. The execution of each program, called a job, was handled as an isolated
activity —the machine was prepared for executing the program, the program
was executed, and then all the tapes, punched cards, etc. had to be retrieved
before the next program preparation could begin. When several users needed
to share a machine, sign-up sheets were provided so that users could reserve
the machine for blocks of time. During the time period allocated to a user, the
machine was totally under that user’s control. The session usually began with
program setup, followed by short periods of program execution. It was often
completed in a hurried effort to do just one more thing (“It will only take a
minute”) while the next user was impatiently starting to set up.

In such an environment, operating systems began as systems for simpli-
fying program setup and for streamlining the transition between jobs. One
early development was the separation of users and equipment, which elimi-
nated the physical transition of people in and out of the computer room. For
this purpose, a computer operator was hired to operate the machine. Anyone
wanting a program run was required to submit it, along with any required

3.1 The History of Operating Systems

Jobs: Program, data, Results
and directions

User domain

Machine Job
. ——
domain e execution

Figure 3.1 Batch processing

data and special directions about the program’s requirements, to the operator
and return later for the results. The operator, in turn, loaded these materials
into the machine’s mass storage where a program called the operating system
could read and execute them one at a time. This was the beginning of batch
processing—the execution of jobs by collecting them in a single batch, then
executing them without further interaction with the user.

In batch processing systems, the jobs residing in mass storage wait for
execution in a job queue (Figure 3.1). A queue is a storage organization in
which objects (in this case, jobs) are ordered in first-in, first-out (abbreviated
FIFO and pronounced “FI-foe”) fashion. That is, the objects are removed
from the queue in the order in which they arrived. In reality, most job queues
do not rigorously follow the FIFO structure, since most operating systems
provide for consideration of job priorities. As a result, a job waiting in the job
queue can be bumped by a higher-priority job.

In early batch processing systems, each job was accompanied by a set of
instructions explaining the steps required to prepare the machine for that
particular job. These instructions were encoded, using a system known as a job
control language (JCL), and stored with the job in the job queue. When the
job was selected for execution, the operating system printed these instructions
at a printer where they could be read and followed by the computer operator.
This communication between the operating system and the computer opera-
tor is still seen today, as witnessed by PC operating systems that report such
errors as “network not available” and “printer not responding.”

A major drawback to using a computer operator as an intermediary
between a computer and its users is that the users have no interaction with
their jobs once they are submitted to the operator. This approach is accept-
able for some applications, such as payroll processing, in which the data and
all processing decisions are established in advance. However, it is not accept-
able when the user must interact with a program during its execution. Exam-
ples include reservation systems in which reservations and cancellations must
be reported as they occur; word processing systems in which documents are
developed in a dynamic write and rewrite manner; and computer games in
which interaction with the machine is the central feature of the game.

To accommodate these needs, new operating systems were developed that
allowed a program being executed to carry on a dialogue with the user through

165

166

Chapter 3 Operating Systems

Programs, data,
directions, and results

User domain \ \
Machine P
domain rogrem

execution

Figure 3.2 Interactive processing

remote terminals—a feature known as interactive processing (Figure 3.2).
(A terminal consisted of little more than an electronic typewriter by which the
user could type input and read the computer’s response that was printed on
paper. While today’s PCs, laptops, and smartphones are vastly more powerful
than the computers and terminals of old, ironically, we still frequently use them
merely to interact with yet more powerful Internet cloud services.)

Paramount to successful interactive processing is that the actions of the
computer be sufficiently fast to coordinate with the needs of the user rather
than forcing the user to conform to the machine’s timetable. (The task of pro-
cessing payroll can be scheduled to conform to the amount of time required
by the computer, but using a word processor would be frustrating if the
machine did not respond promptly as characters are typed.) In a sense, the
computer is forced to execute tasks under a deadline, a process that became
known as real-time processing, in which the actions performed are said to
occur in real time. That is, to say that a computer performs a task in real time
means that the computer performs the task in accordance with deadlines in
its (external real-world) environment.

If interactive systems had been required to serve only one user at a time,
real-time processing would have been no problem. But computers in the 1960s
and 1970s were expensive, so each machine had to serve more than one user.
In turn, it was common for several users, working at remote terminals, to seek
interactive service from a machine at the same time, and real-time consider-
ations presented obstacles. If the operating system insisted on executing only
one job at a time, only one user would receive satisfactory real-time service.

The solution to this problem was to design operating systems that pro-
vided service to multiple users at the same time: a feature called time-sharing.
One means of implementing time-sharing is to apply the technique called
multiprogramming, in which time is divided into intervals and then the execu-
tion of each job is restricted to only one interval at a time. At the end of each
interval, the current job is temporarily set aside and another is allowed to
execute during the next interval. By rapidly shuffling the jobs back and forth
in this manner, the illusion of several jobs executing simultaneously is created.
Depending on the types of jobs being executed, early time-sharing systems
were able to provide acceptable real-time processing to as many as 30 users
simultaneously. Today, multiprogramming techniques are used in single-user

3.1 The History of Operating Systems

as well as multiuser systems, although in the former the result is usually called
multitasking. That is, time-sharing refers to multiple users sharing access to a
common computer, whereas multitasking refers to one user executing numer-
ous tasks simultaneously.

With the development of multiuser, time-sharing operating systems, a typi-
cal computer installation was configured as a large central computer connected
to numerous workstations. From these workstations, users could communicate
directly with the computer from outside the computer room rather than submit-
ting requests to a computer operator. Commonly used programs were stored
in the machine’s mass storage devices and operating systems were designed to
execute these programs as requested from the workstations. In turn, the role of
a computer operator as an intermediary between the users and the computer
began to fade.

Today, the existence of a computer operator has essentially disappeared,
especially in the arena of personal computers, where the computer user
assumes all of the responsibilities of computer operation. Even most large
computer installations run essentially unattended. Indeed, the job of com-
puter operator has given way to that of a system administrator who man-
ages the computer system —obtaining and overseeing the installation of new
equipment and software, enforcing local regulations such as the issuing of new
accounts and establishing mass storage space limits for the various users, and
coordinating efforts to resolve problems that arise in the system —rather than
operating the machines in a hands-on manner.

In short, operating systems have grown from simple programs that
retrieved and executed programs one at a time into complex systems that
coordinate time-sharing, maintain programs and data files in the machine’s
mass storage devices, and respond directly to requests from the computer’s
users.

But the evolution of operating systems continues. The development of
multiprocessor machines has led to operating systems that provide time-
sharing/multitasking capabilities by assigning different tasks to different
processors as well as by sharing the time of each single processor. These oper-
ating systems must wrestle with such problems as load balancing (dynami-
cally allocating tasks to the various processors so that all processors are used
efficiently) and scaling (breaking tasks into a number of subtasks compatible
with the number of processors available).

Moreover, the advent of computer networks in which numerous machines
are connected over great distances has led to the creation of software systems
to coordinate the network’s activities. Thus, the field of networking (which we
will study in Chapter 4) is in many ways an extension of the subject of operat-
ing systems—the goal being to manage resources across many users on many
machines rather than a single, isolated computer.

Still another direction of research in operating systems focuses on devices
that are dedicated to specific tasks such as medical devices, vehicle electronics,
home appliances, cell phones, or other hand-held computers. The computer

167

168 Chapter 3 Operating Systems

systems found in these devices are known as embedded systems. Embed-
ded operating systems are often expected to conserve battery power, meet
demanding, real-time deadlines, or operate continuously with little or no
human oversight. Successes in this endeavor are marked by systems such as
VxWORKS, developed by Wind River Systems and used in the Mars Explo-
ration Rovers named Spirit and Opportunity; Windows CE (also known as
Windows Embedded Compact), developed by Microsoft; and Blackberry
Ltd’s QNX, developed especially for use in hand-held devices and vehicles.

What’s in a Smartphone?

As cell phones have become more powerful, it has become possible for them to offer services well
beyond simply processing voice calls. A typical smartphone can now be used to text message, browse
the Web, provide directions, view multimedia content—in short, it can be used to provide many of the
same services as a traditional PC. As such, smartphones require full-fledged operating systems, not
only to manage the limited resources of the smartphone hardware, but also to provide features that
support the rapidly expanding collection of smartphone application software. The battle for dominance
in the smartphone operating system marketplace promises to be fierce and will likely be settled on the
basis of which system can provide the most imaginative features at the best price. Competitors in the
smartphone operating system arena include Apple’s iOS, Blackberry Ltd’s Blackberry OS, Microsoft’s
Windows Mobile, and Google’s Android.

3.1 Questions & Exercises

1. Identify examples of queues. In each case, indicate any situations
that violate the FIFO structure.

2. Which of the following activities require real-time processing?
a. Printing mailing labels
b. Playing a computer game

c. Displaying numbers on a smartphone screen as they are
dialed

d. Executing a program that predicts the state of next year’s
economy

e. Playing an MP3 recording
3. What is the difference between embedded systems and PCs?
4. What is the difference between time-sharing and multitasking?

J

3.2 Operating System Architecture

3.2 Operating System Architecture

To understand the composition of a typical operating system, we first consider
the complete spectrum of software found within a typical computer system.
Then we will concentrate on the operating system itself.

A Software Survey

We approach our survey of the software found on a typical computer system
by presenting a scheme for classifying software. Such classification schemes
invariably place similar software units in different classes in the same man-
ner as the assignment of time zones dictates that nearby communities must
set their clocks an hour apart even though there is no significant difference
between the occurrence of sunrise and sunset. Moreover, in the case of soft-
ware classification, the dynamics of the subject and the lack of a definitive
authority lead to contradictory terminology. For example, users of Microsoft’s
Windows operating systems will find groups of programs called “Accessories”
and “Administrative Tools” that include software from what we will call the
application and utility classes. The following taxonomy should therefore be
viewed as a means of gaining a foothold in an extensive, dynamic subject
rather than as a statement of universally accepted fact.

Let us begin by dividing a machine’s software into two broad categories:
application software and system software (Figure 3.3). Application software
consists of the programs for performing tasks particular to the machine’s
utilization. A machine used to maintain the inventory for a manufacturing
company will contain different application software from that found on a
machine used by an electrical engineer. Examples of application software

Software

Application System

Utility Operating
system

User Interface Kernel

Figure 3.3 Software classification

169

170

For the computer enthusiast who wants to experiment with the internal components of an operating
system, there is Linux. Linux is an operating system originally designed by Linus Torvalds while a student
at the University of Helsinki. It is a nonproprietary product and available, along with its source code (see
Chapter 6) and documentation, without charge. Because it is freely available in source code form, it has
become popular among computer hobbyists, students of operating systems, and programmers in general.
Moreover, Linux is recognized as one of the more reliable operating systems available today. For this
reason, several companies now package and market versions of Linux in an easily useable form, and
these products are now challenging the long-established commercial operating systems on the market.
You can learn more about Linux from the website at http://www.linux.org.

Chapter 3 Operating Systems

include spreadsheets, database systems, desktop publishing systems, account-
ing systems, program development software, and games.

In contrast to application software, system software performs those tasks
that are common to computer systems in general. In a sense, the system soft-
ware provides the infrastructure that the application software requires, in
much the same manner as a nation’s infrastructure (government, roads, utili-
ties, financial institutions, etc.) provides the foundation on which its citizens
rely for their individual lifestyles.

Within the class of system software are two categories: one is the operat-
ing system itself and the other consists of software units collectively known
as utility software. The majority of an installation’s utility software consists of
programs for performing activities that are fundamental to computer instal-
lations but not included in the operating system. In a sense, utility software
consists of software units that extend (or perhaps customize) the capabilities
of the operating system. For example, the ability to format a disk or to copy
a file from a magnetic disk to a flash drive is often not implemented within
the operating system itself but instead is provided by means of a utility pro-
gram. Other instances of utility software include software to compress and
decompress data, software for playing multimedia content, and software for
handling network communication.

Implementing certain activities as utility software allows system software
to be customized to the needs of a particular installation more easily than
if they were included in the operating system. Indeed, it is common to find
companies or individuals who have modified, or added to, the utility software
that was originally provided with their machine’s operating system.

Unfortunately, the distinction between application software and utility
software can be vague. From our point of view, the difference is whether the
package is part of the computer’s “software infrastructure.” Thus, a new appli-
cation may evolve to the status of a utility if it becomes a fundamental tool.
When still a research project, software for communicating over the Internet

http://www.linux.org/

3.2 Operating System Architecture

was considered application software; today, such tools are fundamental to
most computer usage and would therefore be classified as utility software.

The distinction between utility software and the operating system is
equally vague. In particular, antitrust lawsuits in the United States and Europe
have been founded on questions regarding whether units such as browsers
and media players are components of Microsoft’s operating systems or utili-
ties that Microsoft has included merely to squash competition.

Components of an Operating System

Let us focus now on components that are within the domain of an operating
system. In order to perform the actions requested by the computer’s users, an
operating system must be able to communicate with those users. The portion
of an operating system that handles this communication is often called the
user interface. Older user interfaces, called shells, communicated with users
through textual messages using a keyboard and monitor screen. More modern
systems perform this task by means of a graphical user interface (GUI — pro-
nounced “GOO-ee”) in which objects to be manipulated, such as files and
programs, are represented pictorially on the display as icons. These systems
allow users to issue commands by using one of several common input devices.
For example, a computer mouse, with one or more buttons, can be used to
click or drag icons on the screen. In place of a mouse, special-purpose point-
ing devices or styluses are often used by graphic artists or on several types
of hand-held devices. More recently, advances in fine-grained touch screens
allow users to manipulate icons directly with their fingers. Whereas today’s
GUIs use two-dimensional image projection systems, three-dimensional
interfaces that allow human users to communicate with computers by means
of 3D projection systems, tactile sensory devices, and surround-sound audio
reproduction systems are subjects of current research.

Although an operating system’s user interface plays an important role in
establishing a machine’s functionality, this framework merely acts as an inter-
mediary between the computer’s user and the real heart of the operating system
(Figure 3.4). This distinction between the user interface and the internal parts
of the operating system is emphasized by the fact that some operating systems
allow a user to select among different interfaces to obtain the most comfortable
interaction for that particular user. Users of the UNIX operating system, for
example, can select among a variety of shells including the Bourne shell, the C
shell, and the Korn shell, as well as a GUI called X11. The earliest versions of
Microsoft Windows were a GUI application program that could be loaded from
the MS-DOS operating system’s command shell. The DOS cmd.exe shell can
still be found as a utility program in the latest versions of Windows, although this
interface is almost never required by casual users. Similarly, Apple’s OS X retains
aTerminal utility shell that hearkens back to that system’s UNIX ancestors.

An important component within today’s GUI shells is the window man-
ager, which allocates blocks of space on the screen, called windows, and keeps

171

172 Chapter 3 Operating Systems

User

User \ / User

// User interface \\

User
User

Figure 3.4 The user interface acts as an intermediary between users and the operating
system’s kernel

track of which application is associated with each window. When an applica-
tion wants to display something on the screen, it notifies the window manager,
and the window manager places the desired image in the window assigned
to the application. In turn, when a mouse button is clicked, it is the window
manager that computes the mouse’s location on the screen and notifies the
appropriate application of the mouse action. Window managers are respon-
sible for what is generally called the “style” of a GUI, and most managers
offer a range of configurable choices. Linux users even have a range of choices
for a window manager, with popular choices including KDE and Gnome.

In contrast to an operating system’s user interface, the internal part of an
operating system is called the kernel. An operating system’s kernel contains
those software components that perform the very basic functions required
by the computer installation. One such unit is the file manager, whose job is
to coordinate the use of the machine’s mass storage facilities. More precisely,
the file manager maintains records of all the files stored in mass storage,
including where each file is located, which users are allowed to access the
various files, and which portions of mass storage are available for new files or
extensions to existing files. These records are kept on the individual storage
medium containing the related files so that each time the medium is placed
on-line, the file manager can retrieve them and thus know what is stored on
that particular medium.

For the convenience of the machine’s users, most file managers allow
files to be grouped into a bundle called a directory or folder. This approach
allows a user to organize his or her files according to their purposes by plac-
ing related files in the same directory. Moreover, by allowing directories to
contain other directories, called subdirectories, a hierarchical organization can
be constructed. For example, a user may create a directory called MyRecords
that contains subdirectories called FinancialRecords, MedicalRecords, and
HouseHoldRecords. Within each of these subdirectories could be files that fall

3.2 Operating System Architecture

within that particular category. (Users of a Windows operating system can ask
the file manager to display the current collection of folders by executing the
utility program Windows Explorer.)

A chain of directories within directories is called a directory path. Paths
are often expressed by listing the directories along the path separated by
slashes. For instance, animals/prehistoric/dinosaurs would represent the
path starting at the directory named animals, passing through its subdirec-
tory named prehistoric,and terminating in the sub-subdirectory dinosaurs.
(For Windows users, the slashes in such a path expression are reversed, as in
animals\prehistoric\dinosaurs.)

Any access to a file by other software units is obtained at the discretion
of the file manager. The procedure begins by requesting that the file manager
grant access to the file through a procedure known as opening the file. If
the file manager approves the requested access, it provides the information
needed to find and to manipulate the file.

Another component of the kernel consists of a collection of device driv-
ers, which are the software units that communicate with the controllers (or at
times, directly with peripheral devices) to carry out operations on the periph-
eral devices attached to the machine. Each device driver is uniquely designed
for its particular type of device (such as a printer, disk drive, or monitor)
and translates generic requests into the more technical steps required by the
device assigned to that driver. For example, a device driver for a printer con-
tains the software for reading and decoding that particular printer’s status
word as well as all the other handshaking details. Thus, other software com-
ponents do not have to deal with those technicalities in order to print a file.
Instead, the other components can merely rely on the device driver software
to print the file, and let the device driver take care of the details. In this man-
ner, the design of the other software units can be independent of the unique
characteristics of particular devices. The result is a generic operating system
that can be customized for particular peripheral devices by merely installing
the appropriate device drivers.

Still another component of an operating system’s kernel is the memory
manager, which is charged with the task of coordinating the machine’s use of
main memory. Such duties are minimal in an environment in which a com-
puter is asked to perform only one task at a time. In these cases, the program
for performing the current task is placed at a predetermined location in main
memory, executed, and then replaced by the program for performing the next
task. However, in multiuser or multitasking environments in which the com-
puter is asked to address many needs at the same time, the duties of the mem-
ory manager are extensive. In these cases, many programs and blocks of data
must reside in main memory concurrently. Thus, the memory manager must
find and assign memory space for these needs and ensure that the actions of
each program are restricted to the program’s allotted space. Moreover, as the
needs of different activities come and go, the memory manager must keep
track of those memory areas no longer occupied.

173

174

Chapter 3 Operating Systems

The task of the memory manager is complicated further when the total
main memory space required exceeds the space actually available in the com-
puter. In this case, the memory manager may create the illusion of additional
memory space by rotating programs and data back and forth between main
memory and mass storage (a technique called paging). Suppose, for example,
that a main memory of 8GB is required but the computer only has 4GB. To
create the illusion of the larger memory space, the memory manager reserves
4GB of storage space on a magnetic disk. There it records the bit patterns that
would be stored in main memory if main memory had an actual capacity of
8GB. This data is divided into uniformly sized units called pages, which are
typically a few KB in size. Then the memory manager shuffles these pages
back and forth between main memory and mass storage so that the pages that
are needed at any given time are actually present in the 4GB of main memory.
The result is that the computer is able to function as though it actually had
8GB of main memory. This large “fictional” memory space created by paging
is called virtual memory.

Two additional components within the kernel of an operating system are
the scheduler and dispatcher, which we will study in the next section. For now,
we merely note that in a multiprogramming system, the scheduler determines
which activities are to be considered for execution, and the dispatcher con-
trols the allocation of time to these activities.

Getting It Started

We have seen that an operating system provides the software infrastructure
required by other software units, but we have not considered how the operat-
ing system gets started. This is accomplished through a procedure known as
boot strapping (often shortened to booting) that is performed by a computer

In addition to the boot loader, a PC’s ROM contains a collection of software routines for perform-
ing fundamental input/output activities such as receiving information from the keyboard, displaying
messages on the computer screen, and reading data from mass storage. Being stored in nonvolatile
memory such as FlashROM, this software is not immutably etched into the silicon of the machine —
the hardware —but is also not as readily changeable as the rest of the programs in mass storage —the
software. The term firmware was coined to describe this middle ground. Firmware routines can be
used by the boot loader to perform I/O activities before the operating system becomes functional.
For example, they are used to communicate with the computer user before the boot process actually
begins and to report errors during booting. Widely used firmware systems include the BIOS (Basic
Input/Output System) long used in PCs, the newer EFI (Extensible Firmware Interface), Sun’s Open
Firmware (now a product of Oracle), and the CFE (Common Firmware Environment) used in many
embedded devices.

3.2 Operating System Architecture

each time it is turned on. It is this procedure that transfers the operating sys-
tem from mass storage (where it is permanently stored) into main memory
(which is essentially empty when the machine is first turned on). To under-
stand the boot strap process and the reason it is necessary, we begin by con-
sidering the machine’s CPU.

A CPU is designed so that its program counter starts with a particular
predetermined address each time the CPU is turned on. It is at this location
that the CPU expects to find the beginning of the program to be executed.
Conceptually, then, all that is needed is to store the operating system at this
location. However, for technical reasons, a computer’s main memory is typi-
cally constructed from volatile technologies —meaning that the memory loses
the data stored in it when the computer is turned off. Thus, the contents of
main memory must be replenished each time the computer is restarted.

In short, we need a program (preferably the operating system) to be pres-
ent in main memory when the computer is first turned on, but the computer’s
volatile memory is erased each time the machine is turned off. To resolve
this dilemma, a small portion of a computer’s main memory where the CPU
expects to find its initial program is constructed from special nonvolatile
memory cells. Such memory is known as read-only memory (ROM) because
its contents can be read but not altered. As an analogy, you can think of stor-
ing bit patterns in ROM as blowing tiny fuses (some blown open—ones—and
some blown closed —zeros), although the technology used is more advanced.
More precisely, most ROM in today’s PCs is constructed with flash memory
technology (which means that it is not strictly ROM because it can be altered
under special circumstances).

In a general-purpose computer, a program called the boot loader is per-
manently stored in the machine’s ROM. This, then, is the program that is
initially executed when the machine is turned on. The instructions in the boot
loader direct the CPU to transfer the operating system from a predetermined
location into the volatile area of main memory (Figure 3.5). Modern boot

Main memory Main memory
Boot Disk storage Boot .
ROM — loader ROM — loader Disk storage
= N D = . =
Operating = '
)) system
Volatile _| Volatile _|
memory memory
Operating Operating
L system L system
Step 1: Machine starts by executing the boot loader Step 2: Boot loader program directs the transfer of
program already in memory. Operating the operating system into main memory
system is stored in mass storage. and then transfers control to it.

Figure 3.5 The booting process

175

176

Chapter 3 Operating Systems

loaders can copy an operating system into main memory from a variety of
locations. For example, in embedded systems, such as smartphones, the oper-
ating system is copied from special flash (nonvolatile) memory;in the case of
small workstations at large companies or universities, the operating system
may be copied from a distant machine over a network. Once the operating
system has been placed in main memory, the boot loader directs the CPU to
execute a jump instruction to that area of memory. At this point, the operating
system takes over and begins controlling the machine’s activities. The overall
process of executing the boot loader and thus starting the operating system
is called booting the computer.

You may ask why desktop computers are not provided with enough
ROM to hold the entire operating system so that booting from mass storage
would not be necessary. While this is feasible for embedded systems with
small operating systems, devoting large blocks of main memory in general-
purpose computers to nonvolatile storage is not efficient with today’s tech-
nology. Moreover, computer operating systems undergo frequent updates in
order to maintain security and keep abreast of new and improved device
drivers for the latest hardware. While it is possible to update operating sys-
tems and boot loaders stored in ROM (often called a firmware update), the
technological limits make mass storage the most common choice for more
traditional computer systems.

In closing, we should point out that understanding the boot process as well
as the distinctions between an operating system, utility software, and applica-
tion software allows us to comprehend the overall methodology under which
most general-purpose computer systems operate. When such a machine is first
turned on, the boot loader loads and activates the operating system. The user
then makes requests to the operating system regarding the utility or applica-
tion programs to be executed. As each utility or application is terminated, the
user is put back in touch with the operating system, at which time the user
can make additional requests. Learning to use such a system is therefore a
two-layered process. In addition to learning the details of the specific utility
or application desired, one must learn enough about the machine’s operating
system to navigate among the applications.

3.2 Questions & Exercises

1. List the components of a typical operating system and
summarize the role of each in a single phrase.

2. What is the difference between application software and utility
software?

3. What is virtual memory?
4. Summarize the booting procedure.

3.3 Coordinating the Machine’s Activities

3.3 Coordinating the Machine’s Activities

In this section, we consider how an operating system coordinates the execu-
tion of application software, utility software, and units within the operating
system itself. We begin with the concept of a process.

The Concept of a Process

One of the most fundamental concepts of modern operating systems is the
distinction between a program and the activity of executing a program. The
former is a static set of directions, whereas the latter is a dynamic activity
whose properties change as time progresses. (This distinction is analogous
to a piece of sheet music, sitting inert in a book on the shelf, versus a musi-
cian performing that piece by taking actions that the sheet music describes.)
The activity of executing a program under the control of the operating
system is known as a process. Associated with a process is the current sta-
tus of the activity, called the process state. This state includes the current
position in the program being executed (the value of the program counter)
as well as the values in the other CPU registers and the associated memory
cells. Roughly speaking, the process state is a snapshot of the machine at
a particular time. At different times during the execution of a program (at
different times in a process), different snapshots (different process states)
will be observed.

Unlike a musician, who normally tries to play only one musical piece at a
time, typical time-sharing/multitasking computers are running many processes,
all competing for the computer’s resources. It is the task of the operating sys-
tem to manage these processes so that each process has the resources (periph-
eral devices, space in main memory, access to files, and access to a CPU) that it
needs, that independent processes do not interfere with one another, and that
processes that need to exchange information are able to do so.

Process Administration

The tasks associated with coordinating the execution of processes are handled
by the scheduler and dispatcher within the operating system’s kernel. The
scheduler maintains a record of the processes present in the computer system,
introduces new processes to this pool, and removes completed processes from
the pool. Thus, when a user requests the execution of an application, it is the
scheduler that adds the execution of that application to the pool of current
processes.

To keep track of all the processes, the scheduler maintains a block of infor-
mation in main memory called the process table. Each time the execution of
a program is requested, the scheduler creates a new entry for that process in
the process table. This entry contains such information as the memory area

177

178 Chapter 3 Operating Systems

assigned to the process (obtained from the memory manager), the priority of
the process, and whether the process is ready or waiting. A process is ready if
it is in a state in which its progress can continue; it is waiting if its progress is
currently delayed until some external event occurs, such as the completion of
a mass storage operation, the pressing of a key at the keyboard, or the arrival
of a message from another process.

The dispatcher is the component of the kernel that oversees the execution
of the scheduled processes. In a time-sharing/multitasking system, this task
is accomplished by multiprogramming; that is, dividing time into short seg-
ments, each called a time slice (typically measured in milliseconds or micro-
seconds), and then switching the CPU’s attention among the processes as
each is allowed to execute for one time slice (Figure 3.6). The procedure of
changing from one process to another is called a process switch (or a context
switch).

Each time the dispatcher awards a time slice to a process, it initiates a
timer circuit that will indicate the end of the slice by generating a signal called
an interrupt. The CPU reacts to this interrupt signal in much the same way
that you react when interrupted from a task. You stop what you are doing,
record where you are in the task (so that you will be able to return at a later
time), and take care of the interrupting entity. When the CPU receives an
interrupt signal, it completes its current machine cycle, saves its position in the
current process and begins executing a program, called an interrupt handler,
which is stored at a predetermined location in main memory. This interrupt
handler is a part of the dispatcher, and it describes how the dispatcher should
respond to the interrupt signal.

Thus, the effect of the interrupt signal is to preempt the current pro-
cess and transfer control back to the dispatcher. At this point, the dispatcher
selects the process from the process table that has the highest priority among
the ready processes (as determined by the scheduler), restarts the timer cir-
cuit, and allows the selected process to begin its time slice.

Intelrrupt Intelrrupt Intelrrupt Interlrupt Intelrrupt
| | I I |
| | |
! Process B ! Process B ! Proc
I I I
I I I
| l —
! Process Process : Process Process : Process
! switch switch 1 switch switch | switch
I I
1 \ | \ 1
I I I
ssA Process A Process A
Advancing
. | | | | | | | | | |
tlme T T T T T T T T T T
Time slice Time slice Time slice Time slice

Figure 3.6 Multiprogramming between process A and process B

3.3 Coordinating the Machine’s Activities

Paramount to the success of a multiprogramming system is the ability to
stop, and later restart, a process. If you are interrupted while reading a book,
your ability to continue reading at a later time depends on your ability to
remember your location in the book as well as the information that you had
accumulated to that point. In short, you must be able to re-create the environ-
ment that was present immediately prior to the interruption.

In the case of a process, the environment that must be re-created is the
process’s state, which as already mentioned, includes the value of the pro-
gram counter as well as the contents of the registers and pertinent memory
cells. CPUs designed for multiprogramming systems incorporate the task of
saving this information as part of the CPU’s reaction to the interrupt signal.
These CPU s also tend to have machine-language instructions for reloading a
previously saved state. Such features simplify the task of the dispatcher when
performing a process switch and exemplify how the design of modern CPUs
is influenced by the needs of today’s operating systems.

In closing, we should note that the use of multiprogramming has been
found to increase the overall efficiency of a machine. This is somewhat coun-
terintuitive since the shuffling of processes required by multiprogramming
introduces an overhead. However, without multiprogramming, each process
runs to completion before the next process begins, meaning the time that a
process is waiting for peripheral devices to complete tasks or for a user to
make the next request is wasted. Multiprogramming allows this lost time
to be given to another process. For example, if a process executes an I/O
request, such as a request to retrieve data from a magnetic disk, the sched-
uler will update the process table to reflect that the process is waiting for an
external event. In turn, the dispatcher will cease to award time slices to that
process. Later (perhaps several hundred milliseconds), when the I/O request
has been completed, the scheduler will update the process table to show that

The use of interrupts for terminating time slices, as described in the text, is only one of many applica-
tions of a computer’s interrupt system. There are many situations in which an interrupt signal is gener-
ated, each with its own interrupt routine. Indeed, interrupts provide an important tool for coordinating
a computer’s actions with its environment. For example, both clicking a mouse and pressing a key on
the keyboard generate interrupt signals that cause the CPU to set aside its current activity and address
the cause of the interrupt.

To manage the task of recognizing and responding to incoming interrupts, the various interrupt
signals are assigned priorities so that the more important tasks can be taken care of first. The highest
priority interrupt is usually associated with a power failure. Such an interrupt signal is generated if
the computer’s power is unexpectedly disrupted. The associated interrupt routine directs the CPU
through a series of “housekeeping” chores during the milliseconds before the voltage level drops
below an operational level.

179

180

Chapter 3 Operating Systems

the process is ready, and thus that process will again compete for time slices.
In short, progress on other tasks will be made while the I/O request is being
performed, and thus the entire collection of tasks will be completed in less
time than if executed in a sequential manner.

3.3 Questions & Exercises

1. Summarize the difference between a program and a process.

2. Summarize the steps performed by the CPU when an interrupt
occurs.

3. In a multiprogramming system, how can high-priority processes
be allowed to run faster than others?

4. If each time slice in a multiprogramming system is 50 milliseconds
and each context switch requires at most a microsecond, how
many processes can the machine service in a single second?

5. If each process uses its complete time slice in the machine in
Question 4, what fraction of the machine’s time is spent actually
performing processes? What would this fraction be if each process
executed an I/O request after only a microsecond of its time slice?

- J

3.4 Handling Competition Among Processes

An important task of an operating system is the allocation of the machine’s
resources to the processes in the system. Here we are using the term resource
in a broad sense, including the machine’s peripheral devices as well as features
within the machine itself. The file manager allocates access to files and allocates
mass storage space for the construction of new files; the memory manager allo-
cates memory space; the scheduler allocates space in the process table; and the
dispatcher allocates time slices. As with many problems in computer systems, this
allocation task may appear simple at first glance. Below the surface, however,
lie several subtleties that can lead to malfunctions in a poorly designed system.
Remember, a machine does not think for itself; it merely follows directions. Thus,
to construct reliable operating systems, we must develop algorithms that cover
every possible contingency, regardless of how minuscule it may appear.

Semaphores

Let us consider a time-sharing/multitasking operating system controlling the
activities of a computer with a single printer. If a process needs to print its
results, it must request that the operating system give it access to the printer’s

3.4 Handling Competition Among Processes =~ 181

Microsoft’s Task Manager

You can gain insight to some of the internal activity of a Microsoft Windows operating system by
executing the utility program called Task Manager. (Press the Ctrl, Alt, and Delete keys simultane-
ously.) In particular, by selecting the Processes tab in the Task Manager window, you can view the
process table. Here is an experiment you can perform: Look at the process table before you activate
any application program. (You may be surprised that so many processes are already in the table.
These are necessary for the system’s basic operation.) Now activate an application and confirm that
an additional process has entered the table. You will also be able to see how much memory space was
allocated to the process.

N\

device driver. At this point, the operating system must decide whether to
grant this request, depending on whether the printer is already being used by
another process. If it is not, the operating system should grant the request and
allow the process to continue; otherwise, the operating system should deny
the request and perhaps classify the process as a waiting process until the
printer becomes available. After all, if two processes were given simultane-
ous access to the computer’s printer, the results would be worthless to both.

To control access to the printer, the operating system must keep track of
whether the printer has been allocated. One approach to this task would be
to use a flag, which in this context refers to a bit in memory whose states are
often referred to as set and clear, rather than 1 and 0. A clear flag (value 0)
indicates that the printer is available and a set flag (value 1) indicates that
the printer is currently allocated. On the surface, this approach seems well-
founded. The operating system merely checks the flag each time a request for
printer access is made. If it is clear, the request is granted and the operating
system sets the flag. If the flag is set, the operating system makes the request-
ing process wait. Each time a process finishes with the printer, the operating
system either allocates the printer to a waiting process or, if no process is
waiting, merely clears the flag.

However, this simple flag system has a problem. The task of testing and
possibly setting the flag may require several machine instructions. (The value
of the flag must be retrieved from main memory, manipulated within the
CPU, and finally stored back in memory.) It is therefore possible for a task
to be interrupted after a clear flag has been detected but before the flag has
been set. In particular, suppose the printer is currently available, and a process
requests use of it. The flag is retrieved from main memory and found to be
clear, indicating that the printer is available. However, at this point, the pro-
cess is interrupted and another process begins its time slice. It too requests the
use of the printer. Again, the flag is retrieved from main memory and found
still clear because the previous process was interrupted before the operating
system had time to set the flag in main memory. Consequently, the operating
system allows the second process to begin using the printer. Later, the original

182

Chapter 3 Operating Systems

process resumes execution where it left off, which is immediately after the
operating system found the flag to be clear. Thus, the operating system con-
tinues by setting the flag in main memory and granting the original process
access to the printer. Two processes are now using the same printer.

The solution to this problem is to insist that the task of testing and pos-
sibly setting the flag be completed without interruption. One approach is to
use the interrupt disable and interrupt enable instructions provided in most
machine languages. When executed, an interrupt disable instruction causes
future interrupts to be blocked, whereas an interrupt enable instruction
causes the CPU to resume responding to interrupt signals. Thus, if the oper-
ating system starts the flag-testing routine with a disable interrupt instruction
and ends it with an enable interrupt instruction, no other activity can inter-
rupt the routine once it starts.

Another approach is to use the test-and-set instruction that is available
in many machine languages. This instruction directs the CPU to retrieve the
value of a flag, note the value received, and then set the flag—all within
a single machine instruction. The advantage here is that because the CPU
always completes an instruction before recognizing an interrupt, the task of
testing and setting the flag cannot be split when it is implemented as a single
instruction.

A properly implemented flag, as just described, is called a semaphore, in
reference to the railroad signals used to control access to sections of track.
In fact, semaphores are used in software systems in much the same way as
they are in railway systems. Corresponding to the section of track that can
contain only one train at a time is a sequence of instructions that should be
executed by only one process at a time. Such a sequence of instructions is
called a critical region. The requirement that only one process at a time be
allowed to execute a critical region is known as mutual exclusion. In summary,
a common way of obtaining mutual exclusion to a critical region is to guard
the critical region with a semaphore. To enter the critical region, a process
must find the semaphore clear and then set the semaphore before entering
the critical region; then, upon exiting the critical region, the process must clear
the semaphore. If the semaphore is found in its set state, the process trying
to enter the critical region must wait until the semaphore has been cleared.

Deadlock

Another problem that can arise during resource allocation is deadlock, the
condition in which two or more processes are blocked from progressing
because each is waiting for a resource that is allocated to another. For exam-
ple, one process may have access to the computer’s printer but be waiting
for access to the computer’s DVD player, while another process has access
to the DVD player but is waiting for the printer. Another example occurs in
systems in which processes are allowed to create new processes (an action
called forking in the UNIX vernacular) to perform subtasks. If the scheduler

3.4 Handling Competition Among Processes

Figure 3.7 A deadlock resulting from competition for nonshareable railroad intersections

has no space left in the process table and each process in the system must
create an additional process before it can complete its task, then no process
can continue. Such conditions, as in other settings (Figure 3.7), can severely
degrade a system’s performance.

Analysis of deadlock has revealed that it cannot occur unless all three of
the following conditions are satisfied:

1. There is competition for nonshareable resources.

2. The resources are requested on a partial basis; that is, having received some
resources, a process will return later to request more.

3. Once a resource has been allocated, it cannot be forcibly retrieved.

The point of isolating these conditions is that the deadlock problem can be
removed by attacking any one of the three. Techniques that attack the third
condition fall into the category known as deadlock detection and correc-
tion schemes. In these cases, the occurrence of deadlock is considered so
remote that no effort is made to avoid the problem. Instead, the approach is
to detect it should it occur and then correct it by forcibly retrieving some of

Python and Operating Systems

new Python processes, or executing other utility or application programs.

When a Python script is executed by a user, the operating system launches a new process to run the
script. Such scripts are often applications, although they can also be considered utility software if they
extend or customize the capabilities of the system. Python scripts interact with components of the
operating system to accomplish their work, such as the file manager for reading and writing files, or
the GUI or shell for providing user interactions. The Python module “0s” provides a variety of pre-
defined, system-agnostic functions for accessing common operating system features, such as forking

183

184 Chapter 3 Operating Systems

the allocated resources. Our example of a full process table might fall in this
class. If deadlock should occur due to a full table, routines within the oper-
ating system (or perhaps a human administrator using his or her powers as
“super user”) can remove (the technical term is kill) some of the processes.
This releases space in the process table, breaking the deadlock and allowing
the remaining processes to continue their tasks.

Techniques that attack the first two conditions are known as deadlock
avoidance schemes. One, for example, attacks the second condition by requir-
ing each process to request all its resources at one time. Another scheme
attacks the first condition, not by removing the competition directly but by
converting nonshareable resources into shareable ones. For example, suppose
the resource in question is a printer and a variety of processes require its use.
Each time a process requests the printer, the operating system could grant the
request. However, instead of connecting the process to the printer’s device
driver, the operating system would connect it to a device driver that stores
the information to be printed in mass storage rather than sending it to the
printer. Thus, each process, thinking it has access to the printer, could execute
in its normal way. Later, when the printer is available, the operating system
could transfer the data from mass storage to the printer. In this manner, the
operating system would make the nonshareable resource appear shareable by
creating the illusion of more than one printer. This technique of holding data
for output at a later but more convenient time is called spooling.

We have introduced spooling as a technique for granting several pro-
cesses access to a common resource —a theme that has many variations. For
example, a file manager could grant several processes access to the same
file if the processes are merely reading data from the file, but conflicts can
occur if more than one process tries to alter a file at the same time. Thus, a
file manager may allocate file access according to the needs of the processes,

Multi-Core Operating Systems

Traditional time-sharing/multitasking systems give the illusion of executing many processes at once
by switching rapidly between time slices faster than a human can perceive. Modern systems continue
to multitask in this way, but in addition, the latest multi-core CPUs are genuinely capable of running
two, four, or many more processes simultaneously. Unlike a group of single-core computers working
together, a multi-core machine contains multiple independent processors (in this case called cores)
that share the computer’s peripherals, memory, and other resources. For a multi-core operating system,
this means that the dispatcher and scheduler must consider which processes to execute on each core.
With different processes running on different cores, handling competition among processes becomes
more challenging because disabling interrupts on all cores whenever one needs to enter a critical
region would be highly inefficient. Computer science has many active research areas related to build-
ing operating system mechanisms better suited to the new multi-core world.

3.4 Handling Competition Among Processes

allowing several processes to have read access but allowing only one to have
write access. Other systems may divide the file into pieces so that differ-
ent processes can alter different parts of the file concurrently. Each of these
techniques, however, has subtleties that must be resolved to obtain a reliable
system. How, for example, should those processes with only read access to a
file be notified when a process with write access alters the file?

3.4 Questions & Exercises

1. Suppose process A and process B are sharing time on the same

machine, and each needs the same nonshareable resource

for short periods of time. (For example, each process may be

printing a series of independent, short reports.) Each process

may then repeatedly acquire the resource, release it, and later

request it again. What is a drawback to controlling access to the

resource in the following manner:
Begin by assigning a flag the value 0. If process A requests the resource and
the flag is 0, grant the request. Otherwise, make process A wait. If process B
requests the resource and the flag is 1, grant the request. Otherwise, make
process B wait. Each time process A finishes with the resource, change the
flag to 1. Each time process B finishes with the resource, change the flag to 0.

2. Suppose a two-lane road converges to one lane to pass through

a tunnel. To coordinate the use of the tunnel, the following signal

system has been installed:
A car entering either end of the tunnel causes red lights above the tunnel
entrances to be turned on. As the car exits the tunnel, the lights are turned
off. If an approaching car finds a red light on, it waits until the light is turned
off before entering the tunnel.

What is the flaw in this system?

3. Suppose the following solutions have been proposed for
removing the deadlock that occurs on a single-lane bridge when
two cars meet. Identify which condition for deadlock given in
the text is removed by each solution.

a. Do not let a car onto the bridge until the bridge is empty.
b. If cars meet, make one of them back up.
c. Add a second lane to the bridge.

4. Suppose we represent each process in a multiprogramming system
with a dot and draw an arrow from one dot to another if the
process represented by the first dot is waiting for a (nonshareable)
resource being used by the second. Mathematicians call the
resulting picture a directed graph. What property of the directed
graph is equivalent to deadlock in the system?

185

186

Chapter 3 Operating Systems

3.5 Security I II

Since the operating system oversees the activities in a computer, it is natural
for it to play a vital role in maintaining security as well. In the broad sense,
this responsibility manifests itself in multiple forms, one of which is reliability.
If a flaw in the file manager causes the loss of part of a file, then the file was
not secure. If a defect in the dispatcher leads to a system failure (often called
a system crash) causing the loss of an hour’s worth of typing, we would argue
that our work was not secure. Thus, the security of a computer system requires
a well-designed, dependable operating system.

The development of reliable software is not a subject that is restricted to
operating systems. It permeates the entire software development spectrum
and constitutes the field of computer science known as software engineering,
which we will study in Chapter 7 In this section, then, we focus on security
problems that are more closely related to the specifics of operating systems.

Attacks from the Outside

An important task performed by operating systems is to protect the com-
puter’s resources from access by unauthorized personnel. In the case of
computers used by multiple people, this is usually approached by means of
establishing “accounts” for the various authorized users—an account being
essentially a record within the operating system containing such entries as the
user’s name, password, and privileges to be granted to that user. The operating
system can then use this information during each login procedure (a sequence
of transactions in which the user establishes initial contact with a computer’s
operating system) to control access to the system.

Accounts are established by a person known as the super user or the
administrator. This person gains highly privileged access to the operating sys-
tem by identifying him- or herself as the administrator (usually by name and
password) during the login procedure. Once this contact is established, the
administrator can alter settings within the operating system, modify critical
software packages, adjust the privileges granted to other users, and perform
a variety of other maintenance activities that are denied normal users.

From this “lofty perch,” the administrator is also able to monitor activ-
ity within the computer system in an effort to detect destructive behavior,
whether malicious or accidental. To assist in this regard, numerous software
utilities, called auditing software, have been developed that record and then
analyze the activities taking place within the computer system. In particular,
auditing software may expose a flood of attempts to login using incorrect
passwords, indicating that an unauthorized user may be trying to gain access
to the computer. Auditing software may also identify activities within a user’s
account that do not conform to that user’s past behavior, which may indicate
that an unauthorized user has gained access to that account. (It is unlikely

that a user who traditionally uses only word processing and spreadsheet soft-
ware will suddenly begin to access highly technical software applications or
try to execute utility packages that lie outside that user’s privileges.)

Another culprit that auditing systems are designed to detect is the pres-
ence of sniffing software, which is software that, when left running on a com-
puter, records activities and later reports them to a would-be intruder. An old,
well-known example is a program that simulates the operating system’s login
procedure. Such a program can be used to trick authorized users into thinking
they are communicating with the operating system, whereas they are actually
supplying their names and passwords to an impostor.

With all the technical complexities associated with computer security, it
is surprising to many that one of the major obstacles to the security of com-
puter systems is the carelessness of the users themselves. They select pass-
words that are relatively easy to guess (such as names and dates), they share
their passwords with friends, they fail to change their passwords on a timely
basis, they subject off-line mass storage devices to potential degradation by

3.5 Security

Password Security

As computers have come to store larger quantities of personal and valuable data, the need to protect
computer accounts with secure passwords becomes increasingly important. Because many network-
connected systems allow various types of remote login, malicious individuals can often build and
deploy software that rapidly tries many possible passwords, far faster than humans can guess or type
passwords. A secure password, therefore, is one that is not readily guessed, and that will take a long
time to discover if an attacker is cycling through all of the possible combinations. For this reason, many
accounts now require minimum password lengths, and may require passwords to contain combinations
of upper case letters, lower case letters, numbers, or various punctuation marks.

Unfortunately, humans are generally not very good at remembering long, secure passwords, espe-
cially if they are required to routinely change passwords as well.

Many software systems exist to help users manage the large number of online logins and pass-
words that seem to be a part of daily online life, but those systems also are only as secure as the master
password that guards them.

Several mnemonic tricks can help the average user to generate and remember a few reasonably
secure passwords. Full words from the dictionary and publicly known personal numbers (such as family
birthdates) should be avoided as among the first things to be guessed by a determined attacker. How-
ever, assembling a phrase with several moderately long words that normally do not occur together,
mixed with different cases and digits or punctuation marks, can make for a memorable mental story
that is not easy to guess or stumble upon.

As an example, an animal-loving friend of the author was once asked to house sit by a col-
league, and the subtasks required of him included feeding dog biscuits to the troop of feral rac-
coons in the back yard, and applying mayonnaise to the house plant leaves to make them shiny.
“RaccO0nTreat&May0Sh1n3” was easy to remember, but hard to guess until it was committed to
print in this book.

187

188

Chapter 3 Operating Systems

transferring them back and forth between machines, and they import unap-
proved software into the system that might subvert the system’s security. For
problems like these, most institutions with large computer installations adopt
and enforce policies that catalog the requirements and responsibilities of the
users.

Attacks from Within

Once an intruder (or perhaps an authorized user with malicious intent) gains
access to a computer system, the next step is usually to explore, looking for
information of interest or for places to insert destructive software. This is a
straightforward process if the prowler has gained access to the administra-
tor’s account, which is why the administrator’s password is closely guarded.
If, however, access is through a general user’s account, it becomes necessary
to trick the operating system into allowing the intruder to reach beyond the
privileges granted to that user. For example, the intruder may try to trick the
memory manager into allowing a process to access main memory cells outside
its allotted area, or the prowler may try to trick the file manager into retriev-
ing files whose access should be denied.

Today’s CPUs are enhanced with features that are designed to foil such
attempts. As an example, consider the need to restrict a process to the area
of main memory assigned to it by the memory manager. Without such restric-
tions, a process could erase the operating system from main memory and
take control of the computer itself. To counter such attempts, CPUs designed
for multiprogramming systems typically contain special-purpose registers in
which the operating system can store the upper and lower limits of a pro-
cess’s allotted memory area. Then, while performing the process, the CPU
compares each memory reference to these registers to ensure that the refer-
ence is within the designated limits. If the reference is found to be outside
the process’s designated area, the CPU automatically transfers control back
to the operating system (by performing an interrupt sequence) so that the
operating system can take appropriate action.

Embedded in this illustration is a subtle but significant problem. Without
further security features, a process could still gain access to memory cells
outside of its designated area merely by changing the special-purpose reg-
isters that contain its memory limits. That is, a process that wanted access to
additional memory could merely increase the value in the register containing
the upper memory limit and then proceed to use the additional memory space
without approval from the operating system.

To protect against such actions, CPUs for multiprogramming systems are
designed to operate in one of two privilege levels; we will call one “privi-
leged mode,” the other we will call “nonprivileged mode.” When in privileged
mode, the CPU is able to execute all the instructions in its machine language.
However, when in nonprivileged mode, the list of acceptable instructions
is limited. The instructions that are available only in privileged mode are

3.5 Security

Multi-Factor Authentication

One solution to the pervasive problem of humans using weak password to secure their computer accounts
is to require more than one piece of evidence to gain access. Passwords are an example of something
that a user knows, along with the answers to commonly used security questions, such as “What is your
maternal grandmother’s maiden name?” A second authentication factor might depend on something that
the user has,such as an ATM card, a specialized security token, or a smartphone with a particular phone
number. A growing number of online accounts require two-factor authentication, in which the user must
provide a password, and also a special access code text messaged to the user’s smartphone during the
login process. A third set of authentication factors might depend on something related to who the user is.
Biometric sensors embedded in mobile devices are now able to readily recognize a user’s unique finger-
print, voice, or retinal pattern. Some researchers are working on additional biometric mechanisms that
might, for example, use smartphone accelerometer data to recognize a user’s unique walking gait pattern.

None of these mechanisms has proven to be entirely foolproof, however, as clever attackers have
employed schemes to snoop user passwords, fool embedded sensors, or even trick human administra-

tors into changing the smartphone number associate with another user’s account.

N

189

called privileged instructions. (Typical examples of privileged instructions
include instructions that change the contents of memory limit registers and
instructions that change the current privilege mode of the CPU.) An attempt
to execute a privileged instruction when the CPU is in nonprivileged mode
causes an interrupt. This interrupt converts the CPU to privileged mode and
transfers control to an interrupt handler within the operating system.

When first turned on, the CPU is in privileged mode. Thus, when the oper-
ating system starts at the end of the boot process, all instructions are execut-
able. However, each time the operating system allows a process to start a
time slice, it switches the CPU to nonprivileged mode by executing a “change
privilege mode” instruction. In turn, the operating system will be notified if
the process attempts to execute a privileged instruction, and thus the operat-
ing system will be in position to maintain the integrity of the computer system.

Privileged instructions and the control of privilege levels are the major
tools available to operating systems for maintaining security. However, the
use of these tools is a complex component of an operating system’s design,
and errors continue to be found in current systems. A single flaw in privilege
level control can open the door to disaster from malicious programmers or
from inadvertent programming errors. If a process is allowed to alter the
timer that controls the system’s multiprogramming system, that process can
extend its time slice and dominate the machine. If a process is allowed to
access peripheral devices directly, then it can read files without supervision
by the system’s file manager. If a process is allowed to access memory cells
outside its allotted area, it can read and even alter data being used by other
processes. Thus, maintaining security continues to be an important task of
an administrator as well as a goal in operating system and processor design.

.- cHAPTER REVIEW PROBLEMS [

190

Chapter 3 Operating Systems

3.5 Questions & Exercises

machine?

N

1. Give some examples of poor choices for passwords and explain
why they would be poor choices.

2. Processors in Intel’s Pentium series provide for four privilege
levels. Why would the designers of CPUs decide to provide four
levels rather than three or five?

3. If a process in a multiprogramming system could access memory
cells outside its allotted area, how could it gain control of the

J

(Ast

1.

2.

erisked problems are associated with optional sections.)

List four activities of a typical operating
system.

What led to the development of the
interactive operating system?

. Suppose three items, R, S, and T, are

placed in a queue in that order. Then one
item is removed from the queue before

a fourth item, X, is placed in the queue.
Then one item is removed from the
queue, the items Y and Z are placed in
the queue, and then the queue is emptied
by removing one item at a time. List all
the items in the order in which they were
removed.

. What is the role of the window manager

in current GUI shells?

. What is a real-time operating system?
. If you have a PC or smartphone, identify

some situations in which you can take
advantage of its multitasking capabilities.

. On the basis of a computer system with

which you are familiar, identify two units
of application software and two units of
utility software. Then explain why you
classified them as you did.

10.

11.

12.

13.

14.

. a. What is the role of the user interface of

operating system?

an

b. What is the role of the kernel of an operating

system?

. What is the use of the process table in

program execution?

Give some examples of functions that are
provided by the “o0s” Python module.

What is the Linux or UNIX command
for creating new processes?

What is the difference between a process
that is ready and a process that is
waiting?

What is the difference between virtual
memory and main memory?

Suppose a computer contained 512MB
(MiB) of main memory, and an operating
system needed to create a virtual
memory of twice that size using pages of
2KB (KiB). How many pages would be
required?

. What complications could arise in a

time-sharing/multitasking system if two
processes require access to the same

16.

17.

18.
19.

20.

21.

22.

23.

file at the same time? Are there cases in
which the file manager should grant such
requests? Are there cases in which the
file manager should deny such requests?

How is firmware different from hardware
and software? What is a firmware update?

Define load balancing and scaling in the
context of multiprocessor architectures.

What is a context switch?

What are the drawbacks of using
privilege levels as controls?

If you have a PC, record the sequence
activities that you can observe when

you turn it on. Then determine what
messages appear on the computer screen
before the booting process actually
begins. What software writes these
messages?

Suppose a multiprogramming operating
system allocated time slices of 10
milliseconds and the machine executed
an average of five instructions per
nanosecond. How many instructions
could be executed in a single time slice?

If a typist types sixty words per minute
(where a word is considered five
characters), how much time would pass
between typing each character? If a
multiprogramming operating system
allocated time slices in 10 millisecond
units and we ignore the time required for
process switches, how many time slices
could be allocated between characters
being typed?

Suppose a multiprogramming operating
system is allotting time slices of

50 milliseconds. If it normally takes

8 milliseconds to position a disk’s read/
write head over the desired track and
another 17 milliseconds for the desired
data to rotate around to the read/write
head, how much of a program’s time slice
can be spent waiting for a read operation
from a disk to take place? If the machine
is capable of executing ten instructions
each nanosecond, how many instructions

24,

25.

26.

27.

28.

29.

30.

31.

191

Chapter Review Problems

can be executed during this waiting
period? (This is why when a process
performs an operation with a peripheral
device, a multiprogramming system
terminates that process’s time slice and
allows another process to run while the
first process is waiting for the services of
the peripheral device.)

What is the drawback of using the set
and clear flag system while allocating
devices?

A process is said to be 1/0-bound

if it requires a lot of I/O operations,
whereas a process that consists of mostly
computations within the CPU/memory
system is said to be compute-bound. If
both a compute-bound process and an
I/O-bound process are waiting for a time
slice, which should be given priority?
Why?

Would greater throughput be achieved
by a system running two processes in a
multiprogramming environment if both
processes were I/O-bound (refer to
Problem 25) or if one were I/O-bound and
the other were compute bound? Why?

Write a set of directions that tells an
operating system’s dispatcher what to do
when a process’s time slice is over.

What are the various functions of the
memory manager in an operating system?

Identify a situation in a
multiprogramming system in which a
process does not consume the entire time
slice allocated to it.

What is meant by an interrupt handler in

multiprogramming systems and what is

its significance?

Answer each of the following in terms of

an operating system that you use:

a. How do you ask the operating system to copy
a file from one location to another?

b. How do you ask the operating system to show
you the directory on a disk?

c. How do you ask the operating system to exe-
cute a program?

192

32,

*33.

*34.

*35.

Chapter 3 Operating Systems

Answer each of the following in terms
of an operating system that you use:

a.

b.

How does the operating system restrict
access to only those who are approved users?
How do you ask the operating system to
show you what processes are currently in the

process table?

c. How do you tell the operating system that
you do not want other users of the machine

to have access to your files?

Explain an important use for the test-
and-set instruction found in many
machine languages. Why is it important
for the entire test-and-set process to be
implemented as a single instruction?

A banker with only $100,000 loans
$50,000 to each of two customers. Later,
both customers return with the story that
before they can repay their loans they
must each borrow another $10,000 to
complete the business deals in which their
previous loans are involved. The banker
resolves this deadlock by borrowing the
additional funds from another source and
passing on this loan (with an increase in
the interest rate) to the two customers.
Which of the three conditions for
deadlock has the banker removed?

Students who want to enroll in Model
Railroading II at the local university
are required to obtain permission from
the instructor and pay a laboratory
fee. The two requirements are fulfilled
independently in either order and

at different locations on campus.
Enrollment is limited to twenty
students; this limit is maintained by
both the instructor, who will grant
permission to only twenty students,
and the financial office, which will
allow only twenty students to pay

the laboratory fee. Suppose that this
registration system has resulted in
nineteen students having successfully
registered for the course, but with

the final space being claimed by two
students—one who has only obtained

*37.

*38.

permission from the instructor and
another who has only paid the fee.

Which requirement for deadlock is
removed by each of the following
solutions to the problem?

a. Both students are allowed in the course.

b.

The class size is reduced to nineteen, so nei-
ther of the two students is allowed to register
for the course.

The competing students are both denied
entry to the class and a third student is given
the twentieth space.

It is decided that the only requirement for
entry into the course is the payment of the
fee. Thus the student who has paid the fee
gets into the course, and entry is denied to

the other student.

Since each area on a computer’s display
can be used by only one process at

a time (otherwise the image on the
screen would be unreadable), these
areas are nonshareable resources that
are allocated by the window manager.
Which of the three conditions necessary
for deadlock does the window manager
remove in order to avoid deadlock?

Suppose each nonshareable resource in
a computer system is classified as a level
1,level 2, or level 3 resource. Moreover,
suppose each process in the system

is required to request the resources it
needs according to this classification.
That is, it must request all the required
level 1 resources at once before
requesting any level 2 resources. Once

it receives the level 1 resources, it can
request all the required level 2 resources,
and so on. Can deadlock occur in such a
system? Why or why not?

Each of two robot arms is programmed
to lift assemblies from a conveyor belt,
test them for tolerances, and place them
in one of two bins depending on the
results of the test. The assemblies arrive
one at a time, with a sufficient interval
between them. To keep both arms from
trying to grab the same assembly, the

*39.

40,

“41.

42,

computers controlling the arms share

a common memory cell. If an arm is
available as an assembly approaches, its
controlling computer reads the value

of the common cell. If the value is
nonzero, the arm lets the assembly pass.
Otherwise, the controlling computer
places a nonzero value in the memory
cell, directs the arm to pick up the
assembly, and places the value 0 back
into the memory cell after the action is
complete. What sequence of events could
lead to a tug-of-war between the two
arms?

Why is disabling the interrupts in
a multicore operating system not
considered to be an efficient approach?

A process that is waiting for a time slice

is said to suffer starvation if it is never

given a time slice.

a. The pavement in the middle of an intersec-
tion can be considered as a nonshareable
resource for which cars approaching the
intersection compete. A traffic light rather
than an operating system is used to control
the allocation of the resource. If the light is
able to sense the amount of traffic arriving
from each direction and is programmed to
give the green light to the heavier traffic, the
lighter traffic might suffer from starvation.
How is starvation avoided?

b. In what sense can a process starve if the dis-
patcher always assigns time slices according
to a priority system in which the priority of
each process remains fixed? (Hint: What
is the priority of the process that just com-
pleted its time slice in comparison to the
processes that are waiting, and consequently,
which routine gets the next time slice?) How,
would you guess, do many operating systems
avoid this problem?

Why do special-purpose registers fall
short of restricting the processes in their
memory area? Explain your answer.

The following is the “dining
philosophers” problem that was
originally proposed by E. W. Dijkstra
and is now a part of computer science

*43.

44,

45.

46.

47.

48.

50.

193

Chapter Review Problems

folklore. Five philosophers are sitting
at a round table. In front of each is a
plate of spaghetti. There are five forks
on the table, one between each plate.
Each philosopher wants to alternate
between thinking and eating. To eat,

a philosopher requires possession of
both the forks that are adjacent to

the philosopher’s plate. Identify the
possibilities of deadlock and starvation
(see Problem 40) that are present in the
dining philosophers problem.

What problem arises as the lengths of
the time slices in a multiprogramming
system are made shorter and shorter?
What about as they become longer and
longer?

When is it preferable to use the
deadlock prevention scheme, the
deadlock avoidance scheme, and the
deadlock detection and recovery
scheme?

Identify two activities that can be
performed by an operating system’s
administrator but not by a typical user.

How is the read action different from
the write action in terms of handling
conflict when multiple processes access
the same file?

Suppose a password consisted of a string
of nine characters from the English
alphabet (twenty-six characters). If each
possible password could be tested in a
millisecond, how long would it take to
test all possible passwords?

Why are CPUs that are designed for
multitasking operating systems capable
of operating at different privilege
levels?

. How are privileged instructions handled

in non-privileged mode?

Identify three ways in which a process
could challenge the security of a
computer system if not prevented from
doing so by the operating system.

194 Chapter 3 Operating Systems

51. What are the conditions that lead to a 54. How is security relevant in current
deadlock? operating systems?
. 52. What are the policies that a user (i.e., the 55. How is the booting process different
administrator) should follow to manage in embedded systems from traditional
login passwords? systems?

. 53. Give appropriate examples of auditing
software and sniffing software.

The following questions are intended as a guide to the ethical/social/legal
issues associated with the field of computing. The goal is not merely to answer
these questions. You should also consider why you answered as you did and
whether your justifications are consistent from one question to the next.

. 1. Suppose you are using a multiuser operating system that allows you
to view the names of the files belonging to other users as well as to
view the contents of those files that are not otherwise protected.

. Would viewing such information without permission be similar to
wandering through someone’s unlocked home withou